亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

Likelihood

  • LDPC碼譯碼相關文獻 Bounds on the maximum Likelihood decoding error probability of low density parity check

    LDPC碼譯碼相關文獻 Bounds on the maximum Likelihood decoding error probability of low density parity check codes

    標簽: probability Likelihood decoding maximum

    上傳時間: 2015-11-25

    上傳用戶:wendy15

  • % This routine provides a convenient way to produce Pd/FAD information % from Likelihood ratio info

    % This routine provides a convenient way to produce Pd/FAD information % from Likelihood ratio information.

    標簽: information convenient Likelihood provides

    上傳時間: 2016-01-05

    上傳用戶:liglechongchong

  • A general decision rule for stochastic blind maximum-Likelihood OSTBC detection is derived.

    A general decision rule for stochastic blind maximum-Likelihood OSTBC detection is derived.

    標簽: maximum-Likelihood stochastic detection decision

    上傳時間: 2013-12-04

    上傳用戶:xcy122677

  • A stack-based sequential depth-first decoder that returns Maximum-Likelihood solutions to spherical

    A stack-based sequential depth-first decoder that returns Maximum-Likelihood solutions to spherical LAST coded MIMO system-type problems

    標簽: Maximum-Likelihood stack-based depth-first sequential

    上傳時間: 2013-12-20

    上傳用戶:hebmuljb

  • he algorithm is equivalent to Infomax by Bell and Sejnowski 1995 [1] using a maximum Likelihood form

    he algorithm is equivalent to Infomax by Bell and Sejnowski 1995 [1] using a maximum Likelihood formulation. No noise is assumed and the number of observations must equal the number of sources. The BFGS method [2] is used for optimization. The number of independent components are calculated using Bayes Information Criterion [3] (BIC), with PCA for dimension reduction.

    標簽: equivalent Likelihood algorithm Sejnowski

    上傳時間: 2016-09-17

    上傳用戶:Altman

  • Maximum Likelihood Methods in Radar Array Signal Processing

    Maximum Likelihood Methods in Radar Array Signal Processing

    標簽: Likelihood Processing Maximum Methods

    上傳時間: 2013-12-29

    上傳用戶:dave520l

  • This demo shows the BER performance of linear, decision feedback (DFE), and maximum Likelihood seque

    This demo shows the BER performance of linear, decision feedback (DFE), and maximum Likelihood sequence estimation (MLSE) equalizers when operating in a static channel with a deep null. The MLSE equalizer is invoked first with perfect channel knowledge, then with an imperfect, although straightforward, channel estimation algorithm. The BER results are determined through Monte Carlo simulation. The demo shows how to use these equalizers seamlessly across multiple blocks of data, where equalizer state must be maintained between data blocks.

    標簽: performance Likelihood decision feedback

    上傳時間: 2013-11-25

    上傳用戶:1079836864

  • Implements Maximum Likelihood estimation of beta and other parameters for model of stock portfolio v

    Implements Maximum Likelihood estimation of beta and other parameters for model of stock portfolio vs. index using kalman filter

    標簽: Implements Likelihood estimation parameters

    上傳時間: 2013-12-28

    上傳用戶:zhangzhenyu

  • 基于數據符號同步的FPGA仿真實現

    近年來,人們對無線數據和多媒體業務的需求迅猛增加,促進了寬帶無線通信新技術的發展和應用。正交頻分復用 (Orthogonal Frequency Division Multiolexing,OFDM)技術已經廣泛應用于各種高速寬帶無線通信系統中。然而 OFDM 系統相比單載波系統更容易受到頻偏和時偏的影響,因此如何有效地消除頻偏和時偏,實現系統的時頻同步是 OFDM 系統中非常關鍵的技術。 本文討論了非同步對 OFDM 系統的影響,分析了當前用于 OFDM 系統中基于數據符號的同步算法,并簡單介紹非基于數據符號同步技術。基于數據符號的同步技術通過加入訓練符號或導頻等附加信息,并利用導頻或訓練符號的相關性實現時頻同步。此算法由于加入了附加信息,降低了帶寬利用率,但同步精度相對較高,同步捕獲時間較短。 隨著電子芯片技術的快速發展,電子設計自動化 (Electronic DesignAutomation,EDA) 技術和可編程邏輯芯片 (FPGA/CPLD) 的應用越來越受到大家的重視,為此文中對 EDA 技術和 Altera 公司制造的 FPGA 芯片的原理和結構特點進行了闡述,還介紹了在相關軟件平臺進行開發的系統流程。 論文在對基于數據符號三種算法進行較詳細的分析和研究的基礎上,尤其改進了基于導頻符號的同步算法之后,利用 Altera 公司的 FPGA 芯片EP1S25F102015 在 OuartusⅡ5.0 工具平臺上實現了 OFDM 同步的硬件設計,然后進行了軟件仿真。其中對基于導頻符號同步的改進算法硬件設計過程了進行了詳細闡述。不僅如此,對于基于 PN 序列幀的同步算法和基于循環前綴 (Cycle Prefix,CP) 的極大似然 (Maximam Likelihood,ML)估計同步算法也有具體的仿真實現。 最后,文章還對它們進行了比較,基于導頻符號同步設計的同步精度比較高,但是耗費芯片的資源多,另一個缺點是沒有頻偏估計,因此運用受到一定限制。基于 PN 序列幀的同步設計使用了最少的芯片資源,但要提取 PN 序列中的信號數據有一定困難。基于循環前綴的同步設計占用了芯片 I/O 腳稍顯多。這幾種同步算法各有優缺點,但可以根據不同的信道環境選用它們。

    標簽: FPGA 數據 同步的 仿真實現

    上傳時間: 2013-04-24

    上傳用戶:斷點PPpp

  • This a Bayesian ICA algorithm for the linear instantaneous mixing model with additive Gaussian noise

    This a Bayesian ICA algorithm for the linear instantaneous mixing model with additive Gaussian noise [1]. The inference problem is solved by ML-II, i.e. the sources are found by integration over the source posterior and the noise covariance and mixing matrix are found by maximization of the marginal Likelihood [1]. The sufficient statistics are estimated by either variational mean field theory with the linear response correction or by adaptive TAP mean field theory [2,3]. The mean field equations are solved by a belief propagation method [4] or sequential iteration. The computational complexity is N M^3, where N is the number of time samples and M the number of sources.

    標簽: instantaneous algorithm Bayesian Gaussian

    上傳時間: 2013-12-19

    上傳用戶:jjj0202

主站蜘蛛池模板: 宁国市| 九龙城区| 涪陵区| 嵩明县| 景洪市| 庐江县| 荔浦县| 博白县| 京山县| 马龙县| 耿马| 上饶市| 龙海市| 绥芬河市| 乌兰浩特市| 晋中市| 武山县| 保康县| 高台县| 黔南| 六安市| 祥云县| 出国| 嘉荫县| 延吉市| 永康市| 莒南县| 涪陵区| 嘉黎县| 洪湖市| 北安市| 改则县| 河北区| 桃园市| 封开县| 旬阳县| 丰台区| 张北县| 寿宁县| 江阴市| 绩溪县|