Electrostatic discharge (ESD) is one of the most prevalent threats to the reliability of electronic components. It is an event in which a finite amount of charge is trans- ferred from one object (i.e., human body) to another (i.e., microchip). This process can result in a very high current passing through the microchip within a very short period of time, and, hence, more than 35% of chip damages can be attributed to an ESD-related event. As such, designing on-chip ESD structures to protect integrated circuits against the ESD stresses is a high priority in the semiconductor industry.
標(biāo)簽: Electrostatic Protection Discharge
上傳時間: 2020-06-05
上傳用戶:shancjb
This document was developed under the Standard Hardware and Reliability Program (SHARP) TechnologyIndependent Representation of Electronic Products (TIREP) project. It is intended for use by VHSIC HardwareDescription Language (VHDL) design engineers and is offered as guidance for the development of VHDL modelswhich are compliant with the VHDL Data Item Description (DID DI-EGDS-80811) and which can be providedto manufacturing engineering personnel for the development of production data and the subsequent productionof hardware. Most VHDL modeling performed to date has been concentrated at either the component level orat the conceptual system level. The assembly and sub-assembly levels have been largely disregarded. Under theSHARP TIREP project, an attempt has been made to help close this gap. The TIREP models are based upon lowcomplexity Standard Electronic Modules (SEM) of the format A configuration. Although these modules are quitesimple, it is felt that the lessons learned offer guidance which can readily be applied to a wide range of assemblytypes and complexities.
標(biāo)簽: Modelling Guide Navy VHDL
上傳時間: 2014-12-23
上傳用戶:xinhaoshan2016
Portable, battery-powered operation of electronic apparatushas become increasingly desirable. Medical, remotedata acquisition, power monitoring and other applicationsare good candidates for battery operation. In some circumstances,due to space, power or reliability considerations,it is preferable to operate the circuitry from a single 1.5Vcell. Unfortunately, a 1.5V supply eliminates almost alllinear ICs as design candidates. In fact, the LM10 opamp-reference and the LT®1017/LT1018 comparators arethe only IC gain blocks fully specifi ed for 1.5V operation.Further complications are presented by the 600mV dropof silicon transistors and diodes. This limitation consumesa substantial portion of available supply range, makingcircuit design diffi cult. Additionally, any circuit designedfor 1.5V operation must function at end-of-life batteryvoltage, typically 1.3V. (See Box Section, “Componentsfor 1.5V Operation.”)
標(biāo)簽: Circuitry Operation Single 1017
上傳時間: 2013-12-20
上傳用戶:Wwill
Portable, battery-powered operation of electronic apparatushas become increasingly desirable. Medical, remotedata acquisition, power monitoring and other applicationsare good candidates for batteryoperation. In some circumstances,due to space, power or reliability considerations,it is preferable to operate the circuitry from a single 1.5Vcell. Unfortunately, a 1.5V supply eliminates almost alllinear ICs as design candidates. In fact, the LM10 opamp-reference and the LT®1017/LT1018 comparators arethe only IC gain blocks fully specifi ed for 1.5V operation.Further complications are presented by the 600mV dropof silicon transistors and diodes. This limitation consumesa substantial portion of available supply range, makingcircuit design diffi cult. Additionally, any circuit designedfor 1.5V operation mustfunction at end-of-life batteryvoltage, typically 1.3V. (See Box Section, “Componentsfor 1.5V Operation.”)
標(biāo)簽: Circuitry Operation Single Cell
上傳時間: 2013-10-30
上傳用戶:hz07104032
在理論分析循環(huán)碼編碼和譯碼基本原理的基礎(chǔ)上,提出了基于單片機(jī)系統(tǒng)的(24,16)循環(huán)碼軟件實(shí)現(xiàn)編碼、譯碼的方案。仿真結(jié)果表明(24,16)循環(huán)碼能有效地克服來自通訊信道的干擾,保證數(shù)據(jù)通信的可靠及系統(tǒng)的穩(wěn)定,使誤碼率大幅度降低。本論文對(24,16)循環(huán)碼的研究結(jié)果表明,可以有效地降低錯誤概率和提高系統(tǒng)的吞吐量,實(shí)現(xiàn)糾錯僅需要在接收端增加有限的存儲空間和計(jì)算復(fù)雜度,具有一定的實(shí)用價值。 Abstract: Based on analyzing the theory of encoding and decoding of cyclic code, this paper showed the schemes of encoding and decoding of(24,16)cyclic code by the software and based on microcontroller. Simulation results show that using (24,16) cyclic codes can effectively overcome the interference from communication channel, ensure the reliability and stability of data communication systems, and reduce the bit error rate greatly. The results of this paper show that by using the (24,16) cyclic code, the error rate can be reduced and the system throughput can be improved. Meanwhile, the system only needs to enlarge limited storage space and computation the complexity at the receiving end to realize error correction. Thus the (24,16) cyclic code has a practical value.
標(biāo)簽: 24 16 單片機(jī)系統(tǒng) 循環(huán)碼
上傳時間: 2013-11-09
上傳用戶:gaoliangncepu
以太網(wǎng)和CAN總線應(yīng)用廣泛,但由于其通信協(xié)議不同,兩種總線器件間無法進(jìn)行數(shù)據(jù)通信,因此,設(shè)計(jì)了基于CP2200與C8051F040的以太網(wǎng)總線與CAN總線接口轉(zhuǎn)換電路,并給出部分相關(guān)硬件電路與軟件設(shè)計(jì)分析。在保證數(shù)據(jù)完整和協(xié)議可靠的前提下,通過握手協(xié)議和簡化的以太網(wǎng)協(xié)議,不僅實(shí)現(xiàn)了以太網(wǎng)數(shù)據(jù)與CAN數(shù)據(jù)的轉(zhuǎn)發(fā),同時還順利的解決了以太網(wǎng)的高速性與CAN的低速率沖突,以及兩者數(shù)據(jù)包之間的大小不同的矛盾。 Abstract: In the development of actual application, Ethernet and CAN bus are used very extensively. Owing to its various communication protocols, the communicating between two kinds of bus device can’t be carried out. Therefore, in order to solve this problem, the Ethernet-CAN bus interface circuit based on CP2200 and C8051F040 was designed in this paper, and part of the related hardware circuit and software design analysis were given. On the condition of data’s integrity and protocols’reliability, through the handshaking protocols and the simplified the Ethernet protocol, not only the data switching between CAN and Ethernet was realized, but also the differ in velocity and packet size was solved.
標(biāo)簽: C8051F040 CAN 以太網(wǎng) 轉(zhuǎn)換
上傳時間: 2013-10-15
上傳用戶:Ants
實(shí)時時鐘是微機(jī)保護(hù)裝置的重要部件,在討論P(yáng)CF8583結(jié)構(gòu)與功能的基礎(chǔ)上,提出采用dsPIC33F系列微處理器與串行I2C時鐘PCF8583的接口設(shè)計(jì)方案,給出了相應(yīng)的接口電路與軟件流程。該設(shè)計(jì)方案結(jié)構(gòu)簡單,可靠性高,開發(fā)周期短,具有一定的實(shí)用與參考價值。所設(shè)計(jì)的微機(jī)保護(hù)裝置已投入現(xiàn)場運(yùn)行,效果良好。 Abstract: Real-time clock chip is an important part in microcomputer protection device.Based on discussing the structure and function of PCF8583,a new interface scheme which uses dsPIC33F microprocessor and serial clock chip(I2C)PCF8583is proposed.The method of the circuit design and the main software flow are introduced in this paper.The scheme has simple structure,higher reliability and shorter exploitation cycle,so has definite practicality or reference value.The microcomputer protection device has been put into operation with better effects.
標(biāo)簽: 8583 PCF 串行時鐘 中的應(yīng)用
上傳時間: 2013-11-18
上傳用戶:Thuan
介紹基于VHDL的微型打印機(jī)控制器的設(shè)計(jì)。論述了微型打印機(jī)的基本原理,以及實(shí)現(xiàn)控制器的VHDL語言設(shè)計(jì)。打印機(jī)的數(shù)據(jù)來自系統(tǒng)中的存儲模塊,根據(jù)需要控制打印。該微型打印機(jī)控制器可取代傳統(tǒng)的微型打印機(jī),且抗干擾性好,可靠性高,具有較強(qiáng)的移植性,稍加改動就可應(yīng)用于不同場合。 Abstract: This paper introduced the design method of micro printer controller based on VHDL.The basic principles of microprinter is explained,as well as the realization of the controller by VHDL language.The printer data is from the system memory modules,can control printer.The design of microprinter controller has antigood and high reliability,it can replace the traditional printer.The controller has very good portability,and need little modify that can use in different situation.
標(biāo)簽: VHDL 微型打印機(jī) 制器設(shè)計(jì)
上傳時間: 2013-11-03
上傳用戶:dudu1210004
為深入了解基于UC3854A控制的PFC變換器中的動力學(xué)特性,研究系統(tǒng)參數(shù)變化對變換器中分岔現(xiàn)象的影響,在建立Boost PFC變換器雙閉環(huán)數(shù)學(xué)模型的基礎(chǔ)上,用Matlab軟件對變換器中慢時標(biāo)分岔及混沌等不穩(wěn)定現(xiàn)象進(jìn)行了仿真。在對PFC變換器中慢時標(biāo)分岔現(xiàn)象仿真的基礎(chǔ)上,分析了系統(tǒng)參數(shù)變化對分岔點(diǎn)的影響,并進(jìn)行了仿真驗(yàn)證。仿真結(jié)果清晰地顯示了輸入整流電壓的幅值變化對系統(tǒng)分岔點(diǎn)的影響。 Abstract: In order to better understand the dynamics characteristic of power factor correction converter based on UC3854A, and make the way that parameters change influences the bifurcation phenomena of the system clearly. The math model of the two closed loop circuits to the Boost PFC (Power Factor Correction) converter controller was built. Then, with the help of Matlab, the simulation for nonlinear phenomena such as chaos and slow-scale bifurcation in the PFC converter was made. Finally the factors that have influence to the phenomenon of bifurcation under slow-scale in PFC converter were analyzed. The simulation results clearly show the parameters change influences the bifurcation point of the system.
上傳時間: 2013-10-17
上傳用戶:杜瑩12345
針對材料試驗(yàn)機(jī)等設(shè)備中要求測量或控制材料拉伸或壓縮的位移,一般采用光電軸角編碼器檢測位置信號,輸出正交編碼脈沖信號。若采用其他方法檢測位置信號,必然導(dǎo)致電路設(shè)計(jì)復(fù)雜,可靠性降低。因此,提出一種基于LS7266R1的電子式萬能材料試驗(yàn)機(jī)設(shè)計(jì)方案。給出了試驗(yàn)機(jī)中的控制器工作原理,LS7266R1與單片機(jī)的接口硬件設(shè)計(jì),以及主程序軟件流程圖。巧妙地把力量傳感器,位移傳感器等機(jī)械運(yùn)動狀態(tài)的壓力或拉力以及位置坐標(biāo),變成了電壓信號和電脈沖數(shù)字信號,供A/D測量和LS7266R1計(jì)數(shù),從而實(shí)現(xiàn)了獨(dú)立完成材料試驗(yàn)控制或通過PC機(jī)串口命令完成材料試驗(yàn)控制。 Abstract: Aiming at the requirement that the displacement of the tension and compression always be tested and controlled in the equipement such as material testing machine. The position signal was tested by photoelectric axial angle coder. Therefore, the paper proposes the design of electronic universal testing machine design based on LS7266R1. If the position signal detected by other methods, will inevitably lead to the circuit design complexity, reliability decreased. The work theory of the controller, the hardware interface design between LS7266R1 and single chip, and the flow chart of main program, are presented in this paper. The signal of the compression or tension power and displacement at working, which tested by power sensor and displacement sensor especially, is changed into electric voltage and electric pulse numerical signals. And these signals can be tested by A/D and counted by LS7266R1. Finally the test of the material properties can be controlled by itself, or controlled by the COM command of PC.
上傳時間: 2013-11-02
上傳用戶:yl1140vista
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1