The author of this textbook intends to consider all stages of the life cycle of the
energy resources: extraction of mineral energy resources and mastering for power
engineering renewable energy, transportation of mineral energy raw materials to the
place of consumption, the conversion of primary energy sources into electrical
and/or thermal energy, transportation and distribution among the customers, and
energy storage (if necessary).
Power Electronics is one of modern and key technologies in Electrical and
Electronics Engineering for green power, sustainable energy systems, and smart
grids. Especially, the transformation of existing electric power systems into smart
grids is currently a global trend. The gradual increase of distributed generators in
smart grids indicates a wide and important role for power electronic converters in
the electric power system, also with the increased use of power electronics devices
(nonlinear loads) and motor loadings, low cost, low-loss and high-performance
shunt current quality compensators are highly demanded by power customers to
solve current quality problems caused by those loadings.
There have been many developments in the field of power electronics since
the publication of the second edition, almost five years ago. Devices have
become bigger and better - bigger silicon die, and current and voltage
ratings. However, semiconductor devices have also become smaller and
better, integrated circuit devices, that is. And the marriage of low power
integrated circuit tecnology and high power semiconductors has resulted in
benefit to both fields.
December 2007, San Jose, California: It seems a long time ago.
I walked into a big networking company to head their small
Power over Ethernet (PoE) applications team. Surprisingly,
I hardly knew anything about PoE prior to that day, having been a
switching-power conversion engineer almost all my life. But it
seemed a great opportunity to widen my horizons. As you can see,
one notable outcome of that seemingly illogical career choice five
years ago is the book you hold in your hands today. I hope this small
body of work goes on to prove worthy of your expectations and also
of all the effort that went into it. Because, behind the scenes, there is a
rather interesting story to relate—about its backdrop, intertwined
with a small slice of modern PoE history, punctuated by a rather res-
tive search for our roots and our true heroes, one that takes us back
almost two centuries
Modern day large power systems are essentially dynamic systems with stringent
requirements of high reliability for the continuous availability of electricity.
Reliability is contingent on the power system retaining stable operation during
steady-state operation and also following disturbances. The subject of power sys-
tem stability has been studied for many decades. With new developments, and there
have been many over the past couple of decades, new concerns and problems arise
that need to be studied and analysed. The objective of this book is a step in that
direction though not ignoring the conventional and well-established approaches.
A power semiconductor module is basically a power circuit of different
materials assembled together using hybrid technology, such as semiconduc-
tor chip attachment, wire bonding, encapsulation, etc. The materials
involved cover a wide range from insulators, conductors, and semiconduc-
tors to organics and inorganics. Since these materials all behave differently
under various environmental, electrical, and thermal stresses, proper selec-
tion of these materials and the assembly processes are critical. In-depth
knowledge of the material properties and the processing techniques is there-
fore required to build a high-performance and highly reliable power module.
The electrical power grid is often referred to as one of the most complex man-
made systems on Earth. Its importance to all aspects of our daily lives, economic
stability, and national security cannot be overstated, and the need for an updated,
secure, resilient, and smarter power grid infrastructure is increasingly recognized
and supported by policy makers and market forces.
For many years prior to the 1970s, engineers designed and built switch mode
power supplies (SMPSs) using methods based largely on intuitive and exper-
imentally derived techniques. In general, these power supplies were able to
achieve their primary goal of high-efficiency power conversion; unfortu-
nately, due to the lack of adequate theoretical analysis techniques, many of
these power supplies only marginally met their desired performance require-
ments. In many cases, they were considered to be unreliable.
Thepredecessorvolumeofthisbookwaspublishedin1996.Intheyears
since then, some things have changed and some have not.
Two of the things that have not changed are the desire for better
models and faster simulations. I performed the original simulations on
my “hyperfast” 133-MHz computer! At the time, I thought if I could just
getafastercomputer,allofourSPICEproblemswouldbehistory,right?
TodayIamsimulatingonacomputerthathasa2.6-GHzprocessorwith
512 MB of RAM, and I would still say that simulations run too slow.
The computer technology has evolved, but so have the models. In 1996
wewereperformingsimulationson100-kHzpowerconverters,whereas
today I routinely see 1- and 2-MHz power converters.