The idea for this book was born during one of my project-related trips to the beautiful city
of Hangzhou in China, where in the role of Chief Architect I had to guide a team of very
young, very smart and extremely dedicated software developers and verification engineers.
Soon it became clear that as eager as the team was to jump into the coding, it did not have
any experience in system architecture and design and if I did not want to spend all my time in
constant travel between San Francisco and Hangzhou, the only option was to groom a number
of local junior architects. Logically, one of the first questions being asked by these carefully
selected future architects was whether I could recommend a book or other learning material
that could speed up the learning cycle. I could not. Of course, there were many books on
various related topics, but many of them were too old and most of the updated information
was either somewhere on the Internet dispersed between many sites and online magazines, or
buried in my brain along with many years of experience of system architecture.
n the first part of this book, we give an introduction to the basic applications of wireless com-
munications, as well as the technical problems inherent in this communication paradigm. After a
brief history of wireless, Chapter 1 describes the different types of wireless services, and works
out their fundamental differences. The subsequent Section 1.3 looks at the same problem from
a different angle: what data rates, ranges, etc., occur in practical systems, and especially, what
combination of performance measures are demanded (e.g., what data rates need to be transmitted
over short distances; what data rates are required over long distances?) Chapter 2 then describes
the technical challenges of communicating without wires, putting special emphasis on fading and
co-channel interference. Chapter 3 describes the most elementary problem of designing a wireless
system, namely to set up a link budget in either a noise-limited or an interference-limited system.
After studying this part of the book, the reader should have an overview of different types of
wireless services, and understand the technical challenges involved in each of them. The solutions
to those challenges are described in the later parts of this book.
Digital radios have undergone an astonishing evolution in the last century. Born as a set of simple and
power-hungry electrical and electromechanical devices for low data rate transmission of telegraph data
in the Marconi age, they have transformed, thanks to substantial advances in electronic technology,
into a set of small, reliable and sophisticated integrated devices supporting broadband multimedia
communications. This, however, would not have been possible unless significant progress had been
made in recent decades in the field of signal processing algorithms for baseband and passband signals.
In fact, the core of any modern digital radio consists of a set of algorithms running over programmable
electronic hardware. This book stems from the research and teaching activities of its co-authors in
the field of algorithmic techniques for wireless communications. A huge body of technical literature
has accumulated in the last four decades in this area, and an extensive coverage of all its important
aspects in a single textbook is impossible. For this reason, we have selected a few important topics
and, for ease of reading, organized them into two parts.
This paper reviews key factors to practical ESD
protection design for RF and analog/mixed-signal (AMS) ICs,
including general challenges emerging, ESD-RFIC interactions,
RF ESD design optimization and prediction, RF ESD design
characterization, ESD-RFIC co-design technique, etc. Practical
design examples are discussed. It means to provide a systematic
and practical design flow for whole-chip ESD protection design
optimization and prediction for RF/AMS ICs to ensure 1 st Si
design success.
stract
With global drivers such as better energy
consumption, energy efficiency and reduction of
greenhouse gases, CO 2 emission reduction has become
key in every layer of the value chain. Power Electronics
has definitely a role to play in these thrilling challenges.
From converters down to compound semiconductors,
innovation is leading to breakthrough technologies. Wide
BandGap, Power Module Packaging, growth of Electric
Vehicle market will game change the overall power
electronic industry and supply chain. In this presentation
we will review power electronics trends, from
technologies to markets.
Instrukcja programowania trójosiowego sterownika ruchu ?przemys?owego wy?wietlania ekranugo” V2.0
Model kontrolera : HYCNC-WPRS232-P3 , Wersja oprogramowania : V2.0 , Data : 2020-7-12
Autor : Guilin Hengyuan Technology Co., Ltd. ( Pan Lee )
The Verilog Hardware Description Language (HDL) is defined in this standard. Verilog HDL is a formal notation intended for use in all phases of the creation of electronic systems. Because it is both machine readable and human readable,it supports the development,verification, synthesis,and testing of hardware designs; the communication of hardware design data; and the maintenance,modification,and procurement of hardware. The primary audiences for this standard are the implementors of tools supporting the language and advanced users of the language.
介紹一種萬能模擬信號輸入采集電路,可以同時支持電壓、電流、熱電偶、熱電阻等常見的工業類型信號,方便后級電路的測量。該研究成果通過不斷優化和完善,已成功應用到了中控儀表的新產品中。The paper introduces a collection circuit of universal signal input. The circuit support voltage, current, thermocouple, thermal resistance and other common industrial type signal. The research results, which has been continuous optimized and improved, has been successfully applied to the new production of Zhejiang Supcon Instrument Co., Ltd.