Computer science as an academic discipline began in the 1960’s. Emphasis was on programming languages, compilers, operating systems, and the mathematical theory that supported these areas. Courses in theoretical computer science covered finite automata, regular expressions, context-free languages, and computability. In the 1970’s, the study of algorithms was added as an important component of theory. The emphasis was on making computers useful. Today, a fundamental change is taking place and the focus is more on a wealth of applications. There are many reasons for this change. The merging of computing and communications has played an important role. The enhanced ability to observe, collect, and store data in the natural sciences, in commerce, and in other fields calls for a change in our understanding of data and how to handle it in the modern setting. The emergence of the web and social networks as central aspects of daily life presents both opportunities and challenges for theory.
標簽: Foundations Science Data of
上傳時間: 2020-06-10
上傳用戶:shancjb
This manuscript is a partial draft of a book to be published in early 1994 by AddisonWesley (ISBN 0-201-63337-X). Addison-Wesley has given me permission to make drafts of the book available to the Tcl community to help meet the need for introductory documentation on Tcl and Tk until the book becomes available. Please observe the restrictions set forth in the copyright notice above: you’re welcome to make a copy for yourself or a friend but any sort of large-scale reproduction or reproduction for profit requires advance permission from Addison-Wesley
標簽: Toolkit
上傳時間: 2020-07-05
上傳用戶:
This edition of Digital Image Processing is a major revision of the book. As in the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008 editions by Gonzalez and Woods, this sixth-generation edition was prepared with students and instructors in mind. The principal objectives of the book continue to be to provide an introduction to basic concepts and methodologies applicable to digital image processing, and to develop a foundation that can be used as the basis for further study and research in this field. To achieve these objectives, we focused again on material that we believe is fundamental and whose scope of application is not limited to the solution of specialized problems. The mathematical complexity of the book remains at a level well within the grasp of college seniors and first-year graduate students who have introductory preparation in mathematical analysis, vectors, matrices, probability, statistics, linear systems, and computer programming. The book website provides tutorials to support readers needing a review of this background material
標簽: Processing Digital Image
上傳時間: 2021-02-20
上傳用戶:
ABSTRACTThe flyback power stage is a popular choice for single and multiple output dc-to-dc converters at powerlevels of 150 Watts or less. Without the output inductor required in buck derived topologies, such as theforward or push-pull converter, the component count and cost are reduced. This application note will reviewthe design procedure for the power stage and control electronics of a flyback converter. In these isolatedconverters, the error signal from the secondary still needs to cross the isolation boundary to achieveregulation. By using the UC3965 Precision Reference with Low Offset Error Amplifier on the secondaryside to drive an optocoupler and the UCC3809 Economy Primary Side Controller on the primary side, asimple and low cost 50 Watt isolated power supply is realized.
標簽: 隔離
上傳時間: 2021-11-24
上傳用戶:kingwide
數字示波器功能強大,使用方便,但是價格相對昂貴。本文以Ti的MSP430F5529為主控器,以Altera公司的EP2C5T144C8 FPGA器件為邏輯控制部件設計數字示波器。模擬信號經程控放大、整形電路后形成方波信號送至FPGA測頻,根據頻率值選擇采用片上及片外高速AD分段采樣。FPGA控制片外AD采樣并將數據輸入到FIFO模塊中緩存,由單片機進行頻譜分析。測試表明:簡易示波器可以實現自動選檔、多采樣率采樣、高精度測頻及頻譜分析等功能。Digital oscilloscope is powerful and easy to use, but also expensive. The research group designed a low-cost digital oscilloscope, the chip of MSP430F5529 of TI is chosen as the main controller and the device of EP2C5T144C8 of Altera company is used as the logic control unit. Analog signal enter the programmable amplifier circuit, shaping circuit and other pre-processing circuit. The shaped rectangular wave signal is sent to FPGA for measure the frequency. According to the frequency value to select AD on-chip or off-chip high-speed AD for sampling. FPGA controls the off-chip AD sampling and buffers AD data by FIFO module. The single chip microcomputer receives the data, and do FFT for spectrum analysis. The test shows that the simple oscilloscope can realize automatic gain selection, sampling at different sampling rates, high precision frequency measurement and spectrum analysis.
上傳時間: 2022-03-27
上傳用戶:
Legal Disclaimer Lenze Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lenze Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.Lenze Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling Lenze Semiconductor products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Lenze Semiconductor for any damages arising or resulting from such use or sale.
上傳時間: 2022-06-25
上傳用戶:
PrefaceDuring the past years, there has been a quickly rising interest in radio access technologies for providingmobile as well as nomadic and fixed services for voice, video, and data. The difference indesign, implementation, and use between telecom and datacom technologies is also becoming moreblurred. One example is cellular technologies from the telecom world being used for broadband dataand wireless LAN from the datacom world being used for voice-over IP.Today, the most widespread radio access technology for mobile communication is digital cellular,with the number of users passing 5 billion by 2010, which is more than half of the world’s population.It has emerged from early deployments of an expensive voice service for a few car-borne users,to today’s widespread use of mobile-communication devices that provide a range of mobile servicesand often include camera, MP3 player, and PDA functions. With this widespread use and increasinginterest in mobile communication, a continuing evolution ahead is foreseen.This book describes LTE, developed in 3GPP (Third Generation Partnership Project) and providingtrue 4G broadband mobile access, starting from the first version in release 8 and through the continuingevolution to release 10, the latest version of LTE. Release 10, also known as LTE-Advanced,is of particular interest as it is the major technology approved by the ITU as fulfilling the IMTAdvancedrequirements. The description in this book is based on LTE release 10 and thus provides acomplete description of the LTE-Advanced radio access from the bottom up.Chapter 1 gives the background to LTE and its evolution, looking also at the different standardsbodies and organizations involved in the process of defining 4G. It also gives a discussion of the reasonsand driving forces behind the evolution.Chapters 2–6 provide a deeper insight into some of the technologies that are part of LTE and itsevolution. Because of its generic nature, these chapters can be used as a background not only for LTEas described in this book, but also for readers who want to understand the technology behind othersystems, such as WCDMA/HSPA, WiMAX, and CDMA2000.Chapters 7–17 constitute the main part of the book. As a start, an introductory technical overviewof LTE is given, where the most important technology components are introduced based onthe generic technologies described in previous chapters. The following chapters provide a detaileddescription of the protocol structure, the downlink and uplink transmission schemes, and the associatedmechanisms for scheduling, retransmission and interference handling. Broadcast operation andrelaying are also described. This is followed by a discussion of the spectrum flexibility and the associated
上傳時間: 2022-07-08
上傳用戶:
Recently a new technology for high voltage Power MOSFETshas been introduced – the CoolMOS™ . Based on thenew device concept of charge compensation the RDS(on) areaproduct for e.g. 600V transistors has been reduced by afactor of 5. The devices show no bipolar current contributionlike the well known tail current observed during the turn-offphase of IGBTs. CoolMOS™ virtually combines the lowswitching losses of a MOSFET with the on-state losses of anIGBT.
標簽: COOLMOS
上傳時間: 2013-11-14
上傳用戶:zhyiroy
Abstract: Specifications such as noise, effective number of bits (ENOB), effective resolution, and noise-free resolution inlarge part define how accurate an ADC really is. Consequently, understanding the performance metrics related to noise isone of the most difficult aspects of transitioning from a SAR to a delta-sigma ADC. With the current demand for higherresolution, designers must develop a better understanding of ADC noise, ENOB, effective resolution, and signal-to-noiseratio (SNR). This application note helps that understanding.
上傳時間: 2013-10-16
上傳用戶:x18010875091
The purpose of this application note is to show an example of how a digital potentiometer can be used in thefeedback loop of a step-up DC-DC converter to provide calibration and/or adjustment of the output voltage.The example circuit uses a MAX5025 step-up DC-DC converter (capable of generating up to 36V,120mWmax) in conjunction with a DS1845, 256 position, NV digital potentiometer. For this example, the desiredoutput voltage is 32V, which is generated from an input supply of 5V. The output voltage can be adjusted in35mV increments (near 32V) and span a range wide enough to account for resistance, potentiometer and DCDCconverter tolerances (27.6V to 36.7V).
上傳時間: 2014-12-23
上傳用戶:781354052