關于NACA0012的CFD仿真文件 Computational Study of Flow Around a NACA 0012 Wing Flapped at Different Flap Angles with Varying Mach Numbers
標簽: Computational Around Study 0012 Flow NACA of
上傳時間: 2020-05-10
上傳用戶:nimo1949
Abstract: It is incredible how many programmable logic controls (PLCs) Around us make our modern life possible and pleasant.Machines in our homes heat and cool our air and water, as well as preserve and cook our food. This tutorial explains the importanceof PLCs, and describes how to choose component parts using the parametric tools on the Maxim's website.A similar version of this article was published February 29, 2012 in John Day's Automotive Electronic News.
上傳時間: 2013-11-10
上傳用戶:liaocs77
Automotive power systems are unforgiving electronicenvironments. Transients to 90V can occur when thenominal voltage range is 10V to 15V (ISO7637), along withbattery reversal in some cases. It’s fairly straightforwardto build automotive electronics Around this system, butincreasingly end users want to operate portable electronics,such as GPS systems or music/video players,and to charge their Li-Ion batteries from the automotivebattery. To do so requires a compact, robust, effi cientand easy-to-design charging system
上傳時間: 2013-11-04
上傳用戶:wfl_yy
NXP Semiconductor designed the LPC2400 microcontrollers Around a 16-bit/32-bitARM7TDMI-S CPU core with real-time debug interfaces that include both JTAG andembedded Trace. The LPC2400 microcontrollers have 512 kB of on-chip high-speedFlash memory. This Flash memory includes a special 128-bit wide memory interface andaccelerator architecture that enables the CPU to execute sequential instructions fromFlash memory at the maximum 72 MHz system clock rate. This feature is available onlyon the LPC2000 ARM Microcontroller family of products. The LPC2400 can execute both32-bit ARM and 16-bit Thumb instructions. Support for the two Instruction Sets meansEngineers can choose to optimize their application for either performance or code size atthe sub-routine level. When the core executes instructions in Thumb state it can reducecode size by more than 30 % with only a small loss in performance while executinginstructions in ARM state maximizes core performance.
上傳時間: 2013-11-15
上傳用戶:zouxinwang
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas Around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System
上傳時間: 2013-11-05
上傳用戶:維子哥哥
The PPC405 Virtex-4 is a wrapper Around the Virtex-4PowerPC™ 405 Processor Block primitive. For detailsregarding the PowerPC 405, see the PowerPC 405 ProcessorBlock Reference Guide.
上傳時間: 2014-12-05
上傳用戶:flg0001
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas Around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System
上傳時間: 2013-11-14
上傳用戶:zoudejile
The PPC405 Virtex-4 is a wrapper Around the Virtex-4PowerPC™ 405 Processor Block primitive. For detailsregarding the PowerPC 405, see the PowerPC 405 ProcessorBlock Reference Guide.
上傳時間: 2015-01-02
上傳用戶:JIUSHICHEN
Abstract: How can an interface change a happy face to a sad face? Engineers have happy faces when an interface works properly.Sad faces indicate failure somewhere. Because interfaces between microprocessors and ICs are simple—even easy—they are oftenignored until interface failure causes sad faces all Around. In this article, we discuss a common SPI error that can be almostimpossible to find in a large system. Links to interface tutorial information are provided for complete information. Noise as a systemissue and ICs to minimize its effects are also described.
上傳時間: 2013-11-18
上傳用戶:zgz317
The GRLIB IP Library is an integrated set of reusable IP cores, designed for system-on-chip (SOC) development. The IP cores are centered Around the common on-chip bus, and use a coherent method for simulation and synthesis. The library is vendor independent, with support for different CAD tools and target technologies. A unique plug&play method is used to configure and connect the IP cores without the need to modify any global resources.
標簽: system-on-chip integrated designed reusable
上傳時間: 2013-12-20
上傳用戶:小眼睛LSL