對於集成電路而言,汽車是一種苛刻的使用環境,這裡,引擎罩下的工作溫度範圍可寬達 -40°C 至 125°C,而且,在電池電壓總線上出現大瞬變偏移也是預料之中的事
上傳時間: 2013-11-20
上傳用戶:zhaiye
一直以來, 電子電路斷路器( E C B ) 都是由一個MOSFET、一個 MOSFET 控制器和一個電流檢測電阻器所組成的。
上傳時間: 2013-10-18
上傳用戶:qwerasdf
在越來越多的短時間能量存貯應用以及那些需要間歇式高能量脈衝的應用中,超級電容器找到了自己的用武之地。電源故障保護電路便是此類應用之一,在該電路中,如果主電源發生短時間故障,則接入一個後備電源,用於給負載供電
上傳時間: 2014-01-08
上傳用戶:lansedeyuntkn
設計時需要過一款簡單、低成本的閂鎖電路 (latch circuit) ?圖一顯示的就是這樣一款電路,基本上是一個可控矽整流器(SCR),結合了一些離散組件,只需低成本的元件便可以提供電源故障保護。
上傳時間: 2013-11-11
上傳用戶:zq70996813
在電源設計中,工程人員時常會面臨控制 IC 驅動電流不足的問題,或者因為閘極驅動損耗導致控制 IC 功耗過大。為解決這些問題,工程人員通常會採用外部驅動器。目前許多半導體廠商都有現成的 MOSFET 積體電路驅動器解決方案,但因為成本考量,工程師往往會選擇比較低價的獨立元件。
上傳時間: 2013-11-19
上傳用戶:阿譚電器工作室
TLC2543是TI公司的12位串行模數轉換器,使用開關電容逐次逼近技術完成A/D轉換過程。由于是串行輸入結構,能夠節省51系列單片機I/O資源;且價格適中,分辨率較高,因此在儀器儀表中有較為廣泛的應用。 TLC2543的特點 (1)12位分辯率A/D轉換器; (2)在工作溫度范圍內10μs轉換時間; (3)11個模擬輸入通道; (4)3路內置自測試方式; (5)采樣率為66kbps; (6)線性誤差±1LSBmax; (7)有轉換結束輸出EOC; (8)具有單、雙極性輸出; (9)可編程的MSB或LSB前導; (10)可編程輸出數據長度。 TLC2543的引腳排列及說明 TLC2543有兩種封裝形式:DB、DW或N封裝以及FN封裝,這兩種封裝的引腳排列如圖1,引腳說明見表1 TLC2543電路圖和程序欣賞 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上傳時間: 2013-11-19
上傳用戶:shen1230
特性1、8位高性能單片機作為主控制芯片,64K程序存儲器,也可以用來保存數據,斷電數據不丟失;2、工作電源:交直流通用,12V交流電或12V直流電均可,標準功率為10W;3、16路光電隔離數字量輸入,NPN輸入形式,每路輸入點的最大輸入電壓:30V,最大輸入電流:10mA;其中有兩路可作中斷源用于計數;4、12路繼電器隔離輸出,最大輸出電壓為220V,最大輸出電流為5A,輸出口狀態可回讀;5、系統采用光電隔離和啟用內部看門狗及嚴格的高頻濾除特性,使系統工作穩定可靠,無死機現象;是工業級高可靠單片機控制器;6、有兩盞LED燈顯示工作狀態,LED燈和撥碼開關是復用的,也可用來設置兩個參數;7、有1路標準的RS232串行通信接口(抗15KV靜電沖擊),可直接與電腦通信;可通過RS232接口與JMDM系列單片機控制器擴展I/O點,如JMDM-10AIO10DIO、JMDM-2011、JMDM-1830等。8、可直接通過RS232接口下載程序,無需燒錄器,方便程序修改、升級;9、緊湊型(適合任何尺寸的機箱),PCB尺寸:155mm*110mm;安裝孔尺寸:148mm*73mm;10、用KeilC或匯編編程,用戶編程有困難的,可把工藝流程發給我司,我們公司可代為編程。
上傳時間: 2013-10-15
上傳用戶:lbbyxmoran
P87LPC767 OTP 單片機原理 P87LPC767 是20 腳封裝的單片機適合于許多要求高集成度低成本的場合可以滿足許多方面的性能要求作為Philips 小型封裝系列中的一員P87LPC767 提供高速和低速的晶振和RC 振蕩方式可編程選擇具有較寬的操作電壓范圍可編程I/O 口線輸出模式選擇可選擇施密特觸發輸入LED 驅動輸出有內部看門狗定時器P87LPC767 采用80C51 加速處理器結構指令執行速度是標準80C51 MCU 的兩倍特性 操作頻率為20MHz 時除乘法和除法指令外加速80C51 指令執行時間為300600ns VDD=4.5 5.5V 時時鐘頻率可達20MHz VDD=2.7 4.5V 時時鐘頻率最大為10MHz 4 通道多路8 位A/D 轉換器在振蕩器頻率fosc=20MHz 時轉換時間為9.3μs 用于數字功能時操作電壓范圍為2.7 6.0V 4K 字節OTP 程序存儲器128 字節的RAM 32Byte 用戶代碼區可用來存放序列碼及設置參數 2 個16 位定時/計數器每一個定時器均可設置為溢出時觸發相應端口輸出 內含 2 個模擬比較器 全雙工通用異步接收/發送器UART 及I2C 通信接口 八個鍵盤中斷輸入另加2 路外部中斷輸入 4 個中斷優先級 看門狗定時器利用片內獨立振蕩器,無需外接元件,看門狗定時器溢出時間有8 種選擇 低電平復位使用片內上電復位時不需要外接元件 低電壓復位選擇預設的兩種電壓之一復位可在掉電時使系統安全關閉也可將其設置為一個中斷源 振蕩器失效檢測看門狗定時器具有獨立的片內振蕩器因此它可用于振蕩器的失效檢測 可配置的片內振蕩器及其頻率范圍和RC 振蕩器選項(用戶通過對EPROM 位編程選擇) 選擇RC 振蕩器時不需外接振蕩器件 可編程 I/O 口輸出模式準雙向口,開漏輸出,上拉和只有輸入功能可選擇施密特觸發輸入 所有口線均有20mA 的驅動能力 可控制口線輸出轉換速度以降低EMI,輸出最小上升時間約為10ns 最少 15 個I/O 口,選擇片內振蕩和片內復位時可多達18 個I/O 口 如果選擇片內振蕩及復位時,P87LPC767 僅需要連接電源線和地線 串行 EPROM 編程允許在線編程2 位EPROM 安全碼可防止程序被讀出 空閑和掉電兩種省電模式提供從掉電模式中喚醒功能低電平中斷輸入啟動運行典型的掉電電流為1μA 低功耗 4MHz-20MHz,1.7-10mA@3.3v 100KHz-4MHz,0.044-1.7mA@3.3v 20KHz-100KHz,9-44μA@3.3v 20 腳DIP 和SO 封裝
上傳時間: 2013-11-06
上傳用戶:xcy122677
Single-Ended and Differential S-Parameters Differential circuits have been important incommunication systems for many years. In the past,differential communication circuits operated at lowfrequencies, where they could be designed andanalyzed using lumped-element models andtechniques. With the frequency of operationincreasing beyond 1GHz, and above 1Gbps fordigital communications, this lumped-elementapproach is no longer valid, because the physicalsize of the circuit approaches the size of awavelength.Distributed models and analysis techniques are nowused instead of lumped-element techniques.Scattering parameters, or S-parameters, have beendeveloped for this purpose [1]. These S-parametersare defined for single-ended networks. S-parameterscan be used to describe differential networks, but astrict definition was not developed until Bockelmanand others addressed this issue [2]. Bockelman’swork also included a study on how to adapt single-ended S-parameters for use with differential circuits[2]. This adaptation, called “mixed-mode S-parameters,” addresses differential and common-mode operation, as well as the conversion betweenthe two modes of operation.This application note will explain the use of single-ended and mixed-mode S-parameters, and the basicconcepts of microwave measurement calibration.
上傳時間: 2014-03-25
上傳用戶:yyyyyyyyyy
xilinx的嵌入式開發xps,virtex-4的mini開發板手冊
上傳時間: 2015-06-29
上傳用戶:qoovoop