亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

高<b>能效</b>

  • 本代碼為編碼開關代碼

    本代碼為編碼開關代碼,編碼開關也就是數字音響中的 360度旋轉的數字音量以及顯示器上用的(單鍵飛梭開 關)等類似鼠標滾輪的手動計數輸入設備。 我使用的編碼開關為5個引腳的,其中2個引腳為按下 轉輪開關(也就相當于鼠標中鍵)。另外3個引腳用來 檢測旋轉方向以及旋轉步數的檢測端。引腳分別為a,b,c b接地a,c分別接到P2.0和P2.1口并分別接兩個10K上拉 電阻,并且a,c需要分別對地接一個104的電容,否則 因為編碼開關的觸點抖動會引起輕微誤動作。本程序不 使用定時器,不占用中斷,不使用延時代碼,并對每個 細分步數進行判斷,避免一切誤動作,性能超級穩定。 我使用的編碼器是APLS的EC11B可以參照附件的時序圖 編碼器控制流水燈最能說明問題,下面是以一段流水 燈來演示。

    標簽: 代碼 編碼開關

    上傳時間: 2017-07-03

    上傳用戶:gaojiao1999

  • 【問題描述】 在一個N*N的點陣中

    【問題描述】 在一個N*N的點陣中,如N=4,你現在站在(1,1),出口在(4,4)。你可以通過上、下、左、右四種移動方法,在迷宮內行走,但是同一個位置不可以訪問兩次,亦不可以越界。表格最上面的一行加黑數字A[1..4]分別表示迷宮第I列中需要訪問并僅可以訪問的格子數。右邊一行加下劃線數字B[1..4]則表示迷宮第I行需要訪問并僅可以訪問的格子數。如圖中帶括號紅色數字就是一條符合條件的路線。 給定N,A[1..N] B[1..N]。輸出一條符合條件的路線,若無解,輸出NO ANSWER。(使用U,D,L,R分別表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【輸入格式】 第一行是數m (n < 6 )。第二行有n個數,表示a[1]..a[n]。第三行有n個數,表示b[1]..b[n]。 【輸出格式】 僅有一行。若有解則輸出一條可行路線,否則輸出“NO ANSWER”。

    標簽: 點陣

    上傳時間: 2014-06-21

    上傳用戶:llandlu

  • 離散實驗 一個包的傳遞 用warshall

     實驗源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k); 四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); } 

    標簽: warshall 離散 實驗

    上傳時間: 2016-06-27

    上傳用戶:梁雪文以

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    標簽: 道理特分解法

    上傳時間: 2018-05-20

    上傳用戶:Aa123456789

  • 用Matlab軟件以及雅克比迭代和高斯-賽德爾迭代解方程組Ax=b

    用Matlab軟件以及雅克比迭代和高斯-賽德爾迭代解方程組Ax=b,分析、比較其結果

    標簽: Matlab 迭代 Ax 軟件

    上傳時間: 2015-04-04

    上傳用戶:123456wh

  • 高斯亞當消去法 GAUSSJ(A[],N,B[])用這個子過程實現高斯亞當消去法

    高斯亞當消去法 GAUSSJ(A[],N,B[])用這個子過程實現高斯亞當消去法

    標簽: GAUSSJ 高斯 子過程

    上傳時間: 2015-08-29

    上傳用戶:541657925

  • // 帶有列主元的高斯消元法 // 功能: 求解線性方程組 Ax = b // 參數: A - 指向n*n系數矩陣的指針 //     b - 常數向量的指針 //     n - 方程組的維

    // 帶有列主元的高斯消元法 // 功能: 求解線性方程組 Ax = b // 參數: A - 指向n*n系數矩陣的指針 //     b - 常數向量的指針 //     n - 方程組的維數 // 返回值:0 - 如果成功。線性方程組的解保存在 b 中 //     1 - 求解失敗

    標簽: 方程 指針 Ax 高斯

    上傳時間: 2013-12-18

    上傳用戶:xcy122677

  • 用全選主元高斯消去法求解N復系數階線性方程組AX=B

    用全選主元高斯消去法求解N復系數階線性方程組AX=B

    標簽: AX 高斯 系數 方程

    上傳時間: 2015-11-25

    上傳用戶:ggwz258

  • 第一章 有關數論的算法 1.1最大公約數與最小公倍數 1.2有關素數的算法 1.3方程ax+by=c的整數解及應用 1.4 求a^b mod n 第二章 高精度計算 2.1高精度加法 2

    第一章 有關數論的算法 1.1最大公約數與最小公倍數 1.2有關素數的算法 1.3方程ax+by=c的整數解及應用 1.4 求a^b mod n 第二章 高精度計算 2.1高精度加法 2.2高精度減法 2.3高精度乘法 2.4 高精度除法 練習 第三章 排列與組合 3.1加法原理與乘法原理 練習 3. 2 排列與組合的概念與計算公式 練習 3.3排列與組合的產生算法 練習 第四章 計算幾何 4.1 基礎知識 4.2 線段的相交判斷 4.3尋找凸包算法 練習 第五章 其它數學知識及算法 5.1 鴿巢原理 5.2 容斥原理及應用 5.3 常見遞推關系及應用

    標簽: 1.1 1.2 1.3 1.4

    上傳時間: 2016-01-05

    上傳用戶:frank1234

  • 小信號放大器的設計 1. 放大器是射頻/微波系統的必不可少的部件。 2. 放大器有低噪聲、小信號、高增益、中功率、大功率等。 3. 放大器按工作點分有A、AB、B、C、D…等類型。 4. 放大

    小信號放大器的設計 1. 放大器是射頻/微波系統的必不可少的部件。 2. 放大器有低噪聲、小信號、高增益、中功率、大功率等。 3. 放大器按工作點分有A、AB、B、C、D…等類型。 4. 放大器指標有:頻率范圍、動態范圍、增益、噪聲系數、工作效率、1dB壓縮點、三階交調等。

    標簽: 放大器 小信號 射頻 低噪聲

    上傳時間: 2016-02-10

    上傳用戶:ggwz258

主站蜘蛛池模板: 绥化市| 乡宁县| 嘉义县| 苏尼特左旗| 五家渠市| 中阳县| 房产| 淅川县| 天水市| 荆门市| 左云县| 义乌市| 道真| 上高县| 大余县| 临夏市| 米林县| 马鞍山市| 凤山市| 封丘县| 屏东市| 佛教| 新和县| 株洲县| 邢台市| 安溪县| 五常市| 共和县| 洪雅县| 新余市| 大同县| 繁峙县| 工布江达县| 普安县| 德钦县| 黔西县| 阜阳市| 台南县| 柏乡县| 本溪| 昌都县|