主要完成了視頻PS流的分析過程,并對其中的音視頻提取出來
上傳時間: 2014-09-10
上傳用戶:erkuizhang
,用MATLAB實現(xiàn)快跳頻通信系統(tǒng)的仿真。主要應用了SIMULINK和COMMUNICATION BLOCKETS兩個模塊。整個設計包括了信源產(chǎn)生部分、發(fā)送部分、跳頻調制部分、信道部分、接收部分和結果分析部分共六個模塊,核心技術是偽隨機序列的產(chǎn)生和頻率合成器的設計,而關鍵技術是收發(fā)兩端的偽隨機碼元的同步。偽隨機碼的產(chǎn)生用S-函數(shù)編程來開發(fā)自己的SIMULINK模塊。同步的實現(xiàn)是收發(fā)兩端采用相同的擴頻脈沖觸發(fā)。而且在設計中每個模塊都采用了模塊封裝技術,從而簡化了框圖結構
標簽: COMMUNICATION 分 BLOCKETS SIMULINK
上傳時間: 2013-12-26
上傳用戶:ljt101007
通達信集成版股票系統(tǒng)公式編程教程,簡述很全面,有例子分析。我找了很久才找到,希望對大家有用。
上傳時間: 2013-12-26
上傳用戶:ainimao
分析了Tm,Ho共摻光纖激光器在達到穩(wěn)態(tài)之前的動態(tài)弛豫振蕩過程,形象描述了光纖激光器的動力學過程
標簽: 分
上傳時間: 2013-12-08
上傳用戶:huql11633
算法分析,有利于你實現(xiàn)乘積最大,其實很簡單的,不信你看看就好了啊
標簽: 算法分析
上傳時間: 2017-09-11
上傳用戶:a673761058
對超敏捷動中成像遙感衛(wèi)星角速度快(6 (°)/s)、角加速度大(1.5 (°)/s2)、成像參數(shù)隨時空復雜多變等新問題,開展了超敏捷動中成像特點分析與成像參數(shù)仿真分析工作。構建了動中成像復雜模型,精確分析了動中成像合速度的變化規(guī)律。在此基礎上,結合信噪比、調制傳遞函數(shù)(MTF)等計算公式,全面分析了不同成像條件下,動中成像系統(tǒng)的行頻、TDI級數(shù)、姿態(tài)穩(wěn)定度MTF、同步誤差MTF、偏流修正誤差MTF等隨角速度的變化關系,為超敏捷動中成像衛(wèi)星,尤其是衛(wèi)星的成像電子學,提供了重要的設計依據(jù)。
上傳時間: 2020-02-16
上傳用戶:shiguiguo
5G 底層核心技術專利現(xiàn)狀分析 無線通信技術從 2G 到 3G 是一個歷史性的跨越,從單純的語音通話和簡單的短信數(shù)據(jù)傳輸, 跨入了無線互聯(lián)網(wǎng)。 在 2009 年發(fā)放 3G 牌照的時候,產(chǎn)業(yè)界最希望找到的是應用無線寬帶能力的殺手級應用。 當時最早的應用是把 3G 當做無線上網(wǎng)卡銷售,例如中國電信的 CDMA2000 每月 300 小時不限流 量的 3G 上網(wǎng)卡。而通過 4 年多的產(chǎn)業(yè)實踐,到了 4G 時代,應用無線寬帶能力的導航、音樂、 在線視頻、購物、支付、游戲等殺手級應用已經(jīng)涌現(xiàn),無線寬帶的流量開始變得珍貴,目前中 國電信的 4G 套餐就沒有按小時計費全部都按流量計費。 正是看到了產(chǎn)業(yè)的興旺發(fā)達,在 2013 年剛剛發(fā)放 4G 牌照后,2015 年 5G 就成為了熱門的 話題。之前的分析占據(jù) 5G 產(chǎn)業(yè)的制高點關鍵在于底層核心技術。有一種觀點認為,目前 5G 的 框架還沒有確定,談核心空口技術是否過早。 5G 底層技術專利形成時間遠早于 5G 標準框架 目前對于 5G 的標準制定工作已經(jīng)開始加速,但初步的框架確定估計也要到 2016 年。但標 準框架未定之時,正是底層技術核心專利爭奪的關鍵時期。從歷史上的經(jīng)驗看。我國自主提出 的 3G 國際標準 TD-SCDMA 的標準框架專利 CN97104039.7 是在 1997 年由信威通信申請的。而高 通公司賴以掌控 3G 產(chǎn)業(yè)鏈命脈的底層 CDMA 核心專利卻是美國高通公司于
標簽: 5g
上傳時間: 2022-02-21
上傳用戶:
家 庭 總 線 是 智 能 家 居 實 現(xiàn) 的 重 要 基 礎 . 是 住 宅 內 部 的 神 經(jīng) 系 統(tǒng) . 其 主 要 作 用 是 連 接 家 中的各 種 電子 、 電氣 設 備 . 負責 將 家 庭 內 的 各 種 通 信 設 備 ( 包 括 安 保 、 電話 、 家 電 、 視 聽 設 備 等 )連 接 在 一 起 . 形 成 一 個 完 整 的家 庭 網(wǎng) 絡 。 日 本 是 較 早 推 動 智 能 家 居 發(fā) 展 的 國 家 之 一 , 它 較 早 地 提 出 了 家庭 總線 系統(tǒng) (H O m e B u S S Y S t e m , 簡稱H B S ) 的概念 . 成 立 了 家庭 總線 (H B S )研 究會 . 并 在 郵政省和 通 產(chǎn) 省 的指 導 下 組 成 了H B S 標 準委 員 會 , 制定 了 日 本 的H B s 標 準 。 按 照 該 標 準 , H B S 系統(tǒng) 由一 條 同 軸 電 纜 和 4 對 雙 絞 線 構 成 , 前 者 用 于 傳 輸 圖 像 信 息 . 后者 用 于 傳輸語 音 、 數(shù)據(jù)及 控制信 號 。 各 類家用 設 備 與 電氣 設 備 均 按 一 定 方式 與H B S 相 連 , 這 些 電氣設 備 既 可 以在 室 內進 行 控制 . 也 可 在異地 通 過 電話進行 遙 控 。 為適 應 大型 居住社 區(qū) 的需 要 , 1 9 8 8 年年初 , 日 本住 宅信息 化推進協(xié)會 又 推 出 了 超級 家庭總 線 (S u p e r H0 m e B u s S y s t e m , 簡 稱S - H B S ) , 它適 用 于 更 大 的范 圍 . 因 為一 個S - H B s 系統(tǒng)可 掛接 數(shù)千個家庭 內部 網(wǎng) 。 家庭 智能化要 求諸 多家 電和 網(wǎng)絡能夠彼此 相容 . 總線協(xié) 議是 其精髓 所 在 , 只 有接 E l 暢通 , 家 電才能 “ 聽懂 ” 人 發(fā) 出的指令 , 因此 總線標準 的物理 層 接 口 形 式 是 智能 家居 亟 待解決 的重 要 問題 之 一 。 目前 比 較成型 的總線標 準 協(xié) 議 主 要 是 美 國公 司 提 出 的 , 包 括E c h e l o n 公 司 I)~L o n W o r k s 協(xié)議 、 電子 工 業(yè) 協(xié) 會 (E I A ) 的C E 總線協(xié) 議 (C EB u S ) 、 S m a r t Ho u s e L P 的智 能屋 協(xié) 議 和×一 1 0 公 司 的X 一 1 0 協(xié) 議等。 這 些 協(xié) 議 各 有 優(yōu) 劣 。
標簽: 智能家居
上傳時間: 2022-03-11
上傳用戶:
摘要本文以音響放大系統(tǒng)為研究對象,以電子技術基本理論為基礎,結合當前模擬電子應用技術,對音響放大系統(tǒng)進行了分析和研究,針對現(xiàn)代人群對功放效率的要求和特征,設計出該音響放大系統(tǒng)。音響的音質是音響最重要的環(huán)節(jié),由于我國在高級音響的設計上起步較晚,對新技術的開發(fā)與應用遠遠落后于國外的發(fā)大國家,從放大電路的設計,揚聲器的設計,對音像的還原,降低信噪比,低音的厚重感等等都遠遠超出我國自主產(chǎn)品,但是我國的音響企業(yè)已認識到技術的不足,正在加大研發(fā)的投入,培養(yǎng)技術人才,努力學習和趕超國外的先進技術。本文對現(xiàn)代高級音響設計的工藝有初步的了解,研究高級音響設計的電路組成,能夠理解電路圖的原理,對新技術、新知識進行研究學習,并將所學用于實踐在現(xiàn)代音有普及中,人們因生活層次、文化習俗、音樂修養(yǎng)、欣賞口味的不同,令對相通電氣指標的音響設備得出不同的評價。所以,就高保真度功放而言,應該達到電氣指標與實際聽音指標的平衡與統(tǒng)一。隨者技術的發(fā)展,人民生活水平的提高,人們對音頻技術的功放的效率要求隨之提高。模擬的功率放大器經(jīng)過了幾十年的發(fā)展,在這方面的技術已經(jīng)相當成熟。正因為這樣,數(shù)字功放應運而生。近年來,利用脈寬調劑原理設計的D類功放也進入了音響領域".國外半導體一直專注于研發(fā)高性能的放大器與比較器,目前已成功推出一系列型號齊全的運算放大器,其中包含基本的芯片以及特殊應用標準產(chǎn)品(ASSP),以滿足市場上對高精度、高速度、低電壓及低功率放大器的需求。另外國外在數(shù)字音頻功率放大器領城進行了二三十年的研究,六十年代中期,日本研制出8bit數(shù)字音頻功率發(fā)大器。1893年,M.B.Sandler等學者提出D類數(shù)字PCM功率發(fā)大器的基本結構。主要是圍繞如何將PCM信號轉化為PWM信號。把信號的幅度信號用不同的脈沖寬度來表示。此后,研究的焦點是降低其時鐘頻率,提高音質。隨若數(shù)字信號處理(DSP)技術和新型功率器件及應用的發(fā)展,開始實用化的16位數(shù)字音額功放成為可能。
標簽: 音響電路
上傳時間: 2022-06-18
上傳用戶:
本文針對傳統(tǒng)放大器信噪分離能力弱,無法檢測微弱信號這一現(xiàn)狀,設計了一個基于AD630的鎖相放大器。系統(tǒng)以開關式相關器為鎖相放大器的核心部分進行設計,具有電路簡單、運行速度快、線性度高、動態(tài)范圍大、抗過載能力強等優(yōu)點。本文設計的鎖相放大器硬件主要包括信號通道模塊、參考通道模塊、相關器模塊、電源模塊、電壓檢測模塊、顯示模塊等部分。信號通道模塊的輸入級通過并聯(lián)多個放大器的方式有效降低了噪聲,通過跟蹤帶通濾波電路提高了信噪比;參考通道模塊包含參考電壓放大器、鎖相環(huán)電路和相移器電路三個部分,可以將輸入信號放大10~10000倍:相關器模塊是鎖相放大器的核心部分,采用高信噪比的AD630芯片進行電路設計,包括相敏檢波電路(PSD)和低通濾波電路;電源模塊由集成三端穩(wěn)壓器構成,通過模擬電源和數(shù)字電源隔離的方式有效降低了電源紋波:電壓檢測模塊通過電阻分壓的方式提高了可檢測范圍;顯示模塊為數(shù)字電壓表ZF5135-DC2V,直觀顯示被檢測信號。本文利用Altium Designer軟件繪制PCB板對電路進行了測試,結果表明系統(tǒng)能夠準確檢測到uV級別的信號,并且信噪比較高。相位差在0~360°范圍內連續(xù)調節(jié)時,能夠將較微弱的信號從噪聲的背景中提取出來并進行放大。同時該系統(tǒng)各級電路之間采用直接耦合的方式,對于頻率較低的信號,仍然能進行鎖相放大。設計中對鎖相放大器理想和非理想模型進行了仿真對比,結果表明在未摻雜噪聲時,信號通道將輸入信號放大10倍,相位改變180°。最后根據(jù)行為級建模和電路實物焊接兩種方法進一步分析驗證了鎖相放大器的工作機理。
上傳時間: 2022-07-11
上傳用戶: