近些年來,隨著電力電子技術(shù)的發(fā)展,電力電子系統(tǒng)集成受到越來越多的關(guān)注,其中標準化模塊的串并聯(lián)技術(shù)成為研究熱點之一。輸入并聯(lián)輸出串聯(lián)型(Input-Parallel and Output-Series,IPOS)組合變換器適用于大功率高輸出電壓的場合。 要保證IPOS組合變換器正常工作,必須保證其各模塊的輸出電壓均衡。本文首先揭示了IPOS組合變換器中每個模塊輸入電流均分和輸出電壓均分之間的關(guān)系,在此基礎(chǔ)上提出一種輸出均壓控制方案,該方案對系統(tǒng)輸出電壓調(diào)節(jié)沒有影響。選擇移相控制全橋(Full-Bridge,F(xiàn)B)變換器作為基本模塊,對n個全橋模塊組成的IPOS組合變換器建立小信號數(shù)學(xué)模型,推導(dǎo)出采用輸出均壓控制方案的IPOS-FB系統(tǒng)的數(shù)學(xué)模型,該模型證明各模塊輸出均壓閉環(huán)不影響系統(tǒng)輸出電壓閉環(huán)的調(diào)節(jié),給出了模塊輸出均壓閉環(huán)和系統(tǒng)輸出電壓閉環(huán)的補償網(wǎng)絡(luò)參數(shù)設(shè)計。對于IPOS組合變換器,采用交錯控制,由于電流紋波抵消效應(yīng),輸入濾波電容容量可大大減小;由于電壓紋波抵消作用,在相同的系統(tǒng)輸出電壓紋波下,各模塊的輸出濾波電容可大大減小,由此可以提高變換器的功率密度。 根據(jù)所提出的輸出均壓控制策略,在實驗室研制了一臺由兩個1kW全橋模塊組成的IPOS-FB原理樣機,每個模塊輸入電壓為270V,輸出電壓為180V。并進行了仿真和實驗驗證,結(jié)果均表明本控制方案是正確有效的。
上傳時間: 2013-06-17
上傳用戶:cwyd0822
本文主要研究變速風力發(fā)電系統(tǒng)最大功率點的跟蹤問題,以使風力機在處于額定風速以下時能夠?qū)崿F(xiàn)最大風能捕獲。風力發(fā)電系統(tǒng)所采用的功率變流器和最大功率點的跟蹤控制策略提供了基本的研究平臺,以完成本課題的研究。 為了將風能輸送給電網(wǎng),變速風力機要有變流器將發(fā)電機發(fā)出的電壓和頻率都不斷改變的電能轉(zhuǎn)換成恒頻恒壓的電能,再傳輸給電網(wǎng)。本文采用了變速風力機,永磁發(fā)電機,三相AC-DC-DC-AC變流器,變壓器等構(gòu)建了變速風力發(fā)電系統(tǒng)。AC-DC-DC-AC變流器用于將永磁發(fā)電機發(fā)出的電壓和頻率都不斷改變的電能傳輸給電網(wǎng)。鑒于DC-DC直流環(huán)節(jié)在能量傳輸中的重要性,本文專門研究了單重Sepic變換器和雙重Sepic變換器在變速風力發(fā)電系統(tǒng)中所起的作用。 一個先進的變速風力發(fā)電系統(tǒng)的最大功率點跟蹤控制策略要對所控制的風力機起到良好的控制效果,不僅與風電系統(tǒng)所采用的變流器的拓撲結(jié)構(gòu)有關(guān),也與自身的控制方式有關(guān)。本文在對常用的幾種最大功率點的跟蹤控制策略分析研究的基礎(chǔ)上提出了以風力機的輸出功率和系統(tǒng)儲能的變化率以及風力機轉(zhuǎn)速等相關(guān)數(shù)據(jù)來確定風力機的實際工作點的最大功率點跟蹤控制策略,該策略的實施不依賴于風力機自身的特性,不需要測量風速等。 由于對變速風力機的建模和仿真是理解和驗證風力發(fā)電系統(tǒng)特性和最大功率點跟蹤控制策略的可行性的重要手段。因此本文在Matlab軟件的Simulink環(huán)境下對所研究的變速風力發(fā)電系統(tǒng)作了建模和仿真。仿真結(jié)果充分證明了本文所提出的變速風力發(fā)電系統(tǒng)最大功率點跟蹤控制策略的正確性和可行性。
上傳時間: 2013-04-24
上傳用戶:Wwill
混合動力汽車作為解決汽車節(jié)能、降低排放的汽車工業(yè)新技術(shù),具有低污染和低油耗的特點,尤其在油價日益攀高的今天,成為國內(nèi)外汽車發(fā)展的新熱點。驅(qū)動控制器作為混合動力汽車中的主要部件,在混合動力汽車中起到至關(guān)重要的作用,對其進行研究具有重要的理論和現(xiàn)實意義。 本文首先比較了常見的幾種電動汽車的性能,概括了混合動力汽車的優(yōu)點,介紹了混合動力汽車發(fā)電機/電動機一體化技術(shù)的發(fā)展現(xiàn)狀;其次探討了幾種常用交流電動機的性能優(yōu)劣。由于永磁同步電機具有高效、高功率密度以及良好的調(diào)速性能,因此該電機成為本課題混合動力汽車傳動中所使用的電機,論文建立了永磁電動機的數(shù)學(xué)模型,分析了矢量控制原理;在矢量控制原理的基礎(chǔ)上,設(shè)計出了基于TMS320F2812的永磁同步電機矢量控制系統(tǒng)的硬件結(jié)構(gòu),詳細闡述了旋轉(zhuǎn)變壓器及其解碼芯片在系統(tǒng)中的角度和速度的檢測原理以及系統(tǒng)中其他重要的單元。設(shè)計了系統(tǒng)的軟件結(jié)構(gòu),詳細闡述了關(guān)鍵子程序如電流采集、位置檢測程序和SVPWM產(chǎn)生子程序:使用UG軟件設(shè)計出控制器的殼體。最后進行了實驗研究,給出SVPWM波形、相電流波形,進行了全文總結(jié),提出了下一步工作的建議。
上傳時間: 2013-05-21
上傳用戶:abc123456.
作為一個自然不穩(wěn)定系統(tǒng),倒立擺一直被用作實時控制系統(tǒng)實驗的控制設(shè)備。通過對它的研究不僅可以解決控制中的理論問題,還能將控制理論涉及的三個主要基礎(chǔ)學(xué)科:力學(xué)、數(shù)學(xué)和電學(xué)(包含計算機)進行有機的綜合應(yīng)用。此外,在近代機械控制系統(tǒng)中,如航空航天上直升飛機、火箭發(fā)射、衛(wèi)星發(fā)射及生活中的做體操、花樣滑冰、單輪騎車等等,都存在類似于倒立擺的穩(wěn)定控制問題。因此實現(xiàn)倒立擺系統(tǒng)穩(wěn)定控制的研究對實際工程和現(xiàn)實生活有非常重要的意義。 本論文的主要目標是設(shè)計和建造一個基于數(shù)字信號處理器(DSP)的計算機控制系統(tǒng)來控制倒立擺的平衡。論文中用到的控制理論主要是線性控制理論和反饋控制理論。 本文首先對倒立擺的背景和研究現(xiàn)狀作了總體介紹,簡要的闡述了常見的控制算法。隨后詳細介紹了利用牛頓第二定律及相關(guān)的動力學(xué)原理建立一級和二級倒立擺的數(shù)學(xué)模型,并用MAILAB對倒立擺的運動特性進行了仿真。然后研究倒立擺系統(tǒng)的各種控制策略,比較了各種控制方法的效果。 本論文還設(shè)計了基于DSP的計算機控制系統(tǒng)。詳細介紹了DSP硬件電路設(shè)計和外圍電路設(shè)計,用C和匯編語言編寫了系統(tǒng)的控制程序。 最后,對本論文進行了總結(jié),對下一步要進行的工作提出了自己的設(shè)想。 整個論文的完成以一定的理論為基礎(chǔ),既有數(shù)學(xué)模型的分析與推導(dǎo),方法理論的探討,又有實際控制系統(tǒng)設(shè)計過程,而且研究對象相當?shù)湫汀1疚乃瓿傻墓ぷ鳎瓤梢宰鳛楝F(xiàn)代控制理論的教學(xué)實驗,對于具有類似模型的其他裝置如兩足機器人的研究也有一定的借鑒作用。
標簽: DSP 倒立擺 控制系統(tǒng)
上傳時間: 2013-04-24
上傳用戶:huyanju
一本很好的匯編語言教程,跟大家一起分享 課程介紹 第1章 預(yù)備知識 1.1 匯編語言的由來及其特點 1 機器語言 2 匯編語言 3 匯編程序 4 匯編語言的主要特點 5 匯編語言的使用領(lǐng)域 1.2 數(shù)據(jù)的表示和類型 1 數(shù)值數(shù)據(jù)的表示 2 非數(shù)值數(shù)據(jù)的表示 3 基本的數(shù)據(jù)類型 1.3 習(xí)題 第2章 CPU資源和存儲器 2.1 寄存器組 1 寄存器組 2 通用寄存器的作用 3 專用寄存器的作用 2.2 存儲器的管理模式 1 16位微機的內(nèi)存管理模式 2 32位微機的內(nèi)存管理模式 2.3 習(xí)題 第3章 操作數(shù)的尋址方式 3.1 立即尋址方式 3.2 寄存器尋址方式 3.3 直接尋址方式 3.4 寄存器間接尋址方式 3.5 寄存器相對尋址方式 3.6 基址加變址尋址方式 3.7 相對基址加變址尋址方式 3.8 32位地址的尋址方式 3.9 操作數(shù)尋址方式的小結(jié) 3.10 習(xí)題 第4章 標識符和表達式 4.1 標識符 4.2 簡單內(nèi)存變量的定義 1 內(nèi)存變量定義的一般形式 2 字節(jié)變量 3 字變量 4 雙字變量 5 六字節(jié)變量 6 八字節(jié)變量 7 十字節(jié)變量 4.3 調(diào)整偏移量偽指令 1 偶對齊偽指令 2 對齊偽指令 3 調(diào)整偏移量偽指令 4 偏移量計數(shù)器的值 4.4 復(fù)合內(nèi)存變量的定義 1 重復(fù)說明符 2 結(jié)構(gòu)類型的定義 3 聯(lián)合類型的定義 4 記錄類型的定義 5 數(shù)據(jù)類型的自定義 4.5 標號 4.6 內(nèi)存變量和標號的屬性 1 段屬性操作符 2 偏移量屬性操作符 3 類型屬性操作符 4 長度屬性操作符 5 容量屬性操作符 6 強制屬性操作符 7 存儲單元別名操作符 4.7 表達式 1 進制偽指令 2 數(shù)值表達式 3 地址表達式 4.8 符號定義語句 1 等價語句 2 等號語句 3 符號名定義語句 4.9 習(xí)題 第5章 微機CPU的指令系統(tǒng) 5.1 匯編語言指令格式 1 指令格式 2 了解指令的幾個方面 5.2 指令系統(tǒng) 1 數(shù)據(jù)傳送指令 2 標志位操作指令 3 算術(shù)運算指令 4 邏輯運算指令 5 移位操作指令 6 位操作指令 7 比較運算指令 8 循環(huán)指令 9 轉(zhuǎn)移指令 10 條件設(shè)置字節(jié)指令 11 字符串操作指令 12 ASCII-BCD碼調(diào)整指令 13 處理器指令 5.3 習(xí)題 第6章 程序的基本結(jié)構(gòu) 6.1 程序的基本組成 1 段的定義 2 段寄存器的說明語句 3 堆棧段的說明 4 源程序的結(jié)構(gòu) 6.2 程序的基本結(jié)構(gòu) 1 順序結(jié)構(gòu) 2 分支結(jié)構(gòu) 3 循環(huán)結(jié)構(gòu) 6.3 段的基本屬性 1 對齊類型 2 組合類型 3 類別 4 段組 6.4 簡化的段定義 1 存儲模型說明偽指令 2 簡化段定義偽指令 3 簡化段段名的引用 6.5 源程序的輔助說明偽指令 1 模塊名定義偽指令 2 頁面定義偽指令 3 標題定義偽指令 4 子標題定義偽指令 6.6 習(xí)題 第7章 子程序和庫 7.1 子程序的定義 7.2 子程序的調(diào)用和返回指令 1 調(diào)用指令 2 返回指令 7.3 子程序的參數(shù)傳遞 1 寄存器傳遞參數(shù) 2 存儲單元傳遞參數(shù) 3 堆棧傳遞參數(shù) 7.4 寄存器的保護與恢復(fù) 7.5 子程序的完全定義 1 子程序完全定義格式 2 子程序的位距 3 子程序的語言類型 4 子程序的可見性 5 子程序的起始和結(jié)束操作 6 寄存器的保護和恢復(fù) 7 子程序的參數(shù)傳遞 8 子程序的原型說明 9 子程序的調(diào)用偽指令 10 局部變量的定義 7.6 子程序庫 1 建立庫文件命令 2 建立庫文件舉例 3 庫文件的應(yīng)用 4 庫文件的好處 7.7 習(xí)題 第8章 輸入輸出和中斷 8.1 輸入輸出的基本概念 1 I/O端口地址 2 I/O指令 8.2 中斷 1 中斷的基本概念 2 中斷指令 3 中斷返回指令 4 中斷和子程序 8.3 中斷的分類 1 鍵盤輸入的中斷功能 2 屏幕顯示的中斷功能 3 打印輸出的中斷功能 4 串行通信口的中斷功能 5 鼠標的中斷功能 6 目錄和文件的中斷功能 7 內(nèi)存管理的中斷功能 8 讀取和設(shè)置中斷向量 8.4 習(xí)題 第9章 宏 9.1 宏的定義和引用 1 宏的定義 2 宏的引用 3 宏的參數(shù)傳遞方式 4 宏的嵌套定義 5 宏與子程序的區(qū)別 9.2 宏參數(shù)的特殊運算符 1 連接運算符 2 字符串整體傳遞運算符 3 字符轉(zhuǎn)義運算符 4 計算表達式運算符 9.3 與宏有關(guān)的偽指令 1 局部標號偽指令 2 取消宏定義偽指令 3 中止宏擴展偽指令 9.4 重復(fù)匯編偽指令 1 偽指令REPT 2 偽指令I(lǐng)RP 3 偽指令I(lǐng)RPC 9.5 條件匯編偽指令 1 條件匯編偽指令的功能 2 條件匯編偽指令的舉例 9.6 宏的擴充 1 宏定義形式 2 重復(fù)偽指令REPEAT 3 循環(huán)偽指令WHILE 4 循環(huán)偽指令FOR 5 循環(huán)偽指令FORC 6 轉(zhuǎn)移偽指令GOTO 7 宏擴充的舉例 8 系統(tǒng)定義的宏 9.7 習(xí)題 第10章 應(yīng)用程序的設(shè)計 10.1 字符串的處理程序 10.2 數(shù)據(jù)的分類統(tǒng)計程序 10.3 數(shù)據(jù)轉(zhuǎn)換程序 10.4 文件操作程序 10.5 動態(tài)數(shù)據(jù)的編程 10.6 COM文件的編程 10.7 駐留程序 10.8 程序段前綴及其應(yīng)用 1 程序段前綴的字段含義 2 程序段前綴的應(yīng)用 10.9 習(xí)題 第11章 數(shù)值運算協(xié)處理器 11.1 協(xié)處理器的數(shù)據(jù)格式 1 有符號整數(shù) 2 BCD碼數(shù)據(jù) 3 浮點數(shù) 11.2 協(xié)處理器的結(jié)構(gòu) 11.3 協(xié)處理器的指令系統(tǒng) 1 操作符的命名規(guī)則 2 數(shù)據(jù)傳送指令 3 數(shù)學(xué)運算指令 4 比較運算指令 5 超越函數(shù)運算指令 6 常數(shù)操作指令 7 協(xié)處理器控制指令 11.4 協(xié)處理器的編程舉例 11.5 習(xí)題 第12章 匯編語言和C語言 12.1 匯編語言的嵌入 12.2 C語言程序的匯編輸出 12.3 一個具體的例子 12.4 習(xí)題 附錄
上傳時間: 2013-07-05
上傳用戶:hw1688888
風能作為一種清潔可再生能源,發(fā)展迅速,已經(jīng)成為世界新能源最主要的發(fā)展方向之一。本文以863計劃項目"MW級風力發(fā)電機組電控系統(tǒng)研制"為研究背景,介紹了1.2MW永磁同步電機變速恒頻風力發(fā)電系統(tǒng),研究了變流系統(tǒng)中逆變器的控制方法。 本文首先對風力發(fā)電進行了概述,介紹了我國和世界風電發(fā)展狀況以及技術(shù)發(fā)展趨勢。當今風力發(fā)電技術(shù),大功率直驅(qū)化和雙饋是兩個發(fā)展方向,本課題1.2MW風力發(fā)電系統(tǒng)就是采用了永磁同步電機加交直交變流系統(tǒng)的結(jié)構(gòu)模式,中間省去了齒輪箱,減少了維護,具有較好的發(fā)展前景。 論文第二章首先對風輪機葉片的空氣動力特性進行了分析,介紹了不同風速下風力發(fā)電機的控制策略。就直驅(qū)技術(shù)與變速箱/感應(yīng)電機技術(shù)--目前風力發(fā)電領(lǐng)域變速恒頻技術(shù)的兩大發(fā)展方向作了較為詳細的介紹分析。 在變流系統(tǒng)中,逆變并網(wǎng)是重要的環(huán)節(jié),起到了將電能傳輸?shù)诫娋W(wǎng)的作用。文章中重點分析了三相并網(wǎng)逆變器的主電路結(jié)構(gòu)、原理和工作方法,并進行了理論推導(dǎo)和公式說明。 本文對1.2MW永磁同步電機變速恒頻風力發(fā)電系統(tǒng)的主電路參數(shù)的選擇作了理論推導(dǎo)和計算,包括主電路直流側(cè)電容,網(wǎng)側(cè)電感,三重化升壓電感,網(wǎng)側(cè)濾波電容等,還確定了斬波和逆變部分所采用的開關(guān)管和六相整流所采用的二極管,并在額定正常工作情況下,分別計算斬波和逆變部分開關(guān)管的損耗和開關(guān)管的結(jié)溫。 本課題采用瞬時電流法對并網(wǎng)逆變器進行控制。在實驗中上確定了電壓外環(huán)和電流內(nèi)環(huán)的PI參數(shù),順利完成了閉環(huán)控制實驗。 文中采用DSP2407高速集成控制芯片是控制的核心,并根據(jù)控制流程圖對其控制進行了軟硬件設(shè)計,實現(xiàn)了控制板上的信號采集、運算、故障檢測、電路驅(qū)動等功能。并進行了小功率試驗,得到了較好的電壓電流波形,并對波形進行了詳細分析,驗證了本文采用方法的正確性。
標簽: DSP 風力發(fā)電 并網(wǎng)逆變器
上傳時間: 2013-07-06
上傳用戶:wangdean1101
不間斷電源(UPS)是一種能提供優(yōu)質(zhì)電源并保證電源供應(yīng)連續(xù)的電力電子裝置。它的應(yīng)用范圍廣泛,在很多領(lǐng)域,UPS已經(jīng)成了標準配置。采用數(shù)字信號處理器(DSP)實現(xiàn)UPS的數(shù)字化控制是當前許多UPS設(shè)計者關(guān)注的問題。DSP在UPS中的應(yīng)用主要集中在兩個方面:一是將各種先進的控制方法用于逆變實時數(shù)字控制;二是利用DSP實現(xiàn)更準確更迅速的鎖相環(huán)控制。 本文分析了當前逆變控制的各種方案,針對逆變的擾動及諧波周期出現(xiàn)的特點,采用了重復(fù)控制來提高逆變輸出的穩(wěn)態(tài)特性。因為重復(fù)控制具有一個周期延遲控制的特點,本文也采用了PID控制來改善逆變控制的動態(tài)性能。本文分析了目前重復(fù)控制的常用方案,在建立UPS逆變?yōu)V波電路數(shù)學(xué)模型的基礎(chǔ)上設(shè)計了新的重復(fù)控制和PID控制結(jié)合的方案。對重復(fù)控制與PID復(fù)合控制方案在MATLAB中作了仿真。仿真試驗證明了控制方案的有效性。 在硬件方面,設(shè)計了在線式UPS系統(tǒng)中DSP的接口電路,其中包括DSP供電電路,蓄電池電壓過低檢測電路,市電及輸出電壓過零檢測等電路。對DSP的資源進行了分配,充分利用了DSP的外設(shè)多和速度快的特點。 在軟件方面,設(shè)計了各部分的程序,其中包括主程序,軟件鎖相及正弦參考信號生成程序,輸出有效值控制程序以及各種相關(guān)的中斷及保護程序。 本文結(jié)合實際,搭建了實驗線路,給出了實驗線路的原理及各部分的實驗電路。該實驗電路可對逆變控制過程和鎖相環(huán)節(jié)進行控制實驗。 本文將PID控制與重復(fù)控制相結(jié)合,對逆變器輸出進行控制,驗證了重復(fù)控制與PID復(fù)合控制的有效性。本文還對UPS的DSP數(shù)字化控制作了研究,這些都對UPS技術(shù)的進步有積極的作用。
上傳時間: 2013-05-17
上傳用戶:t1213121
本文以電機控制DSPTMS320LF2407為核心,結(jié)合相關(guān)外圍電路,運用新型SVPWM控制方法,設(shè)計電梯專用變頻器。為了達到電梯專用變頻器大轉(zhuǎn)矩、高性能的要求,在硬件上提高系統(tǒng)的實時性、抗干擾性和高精度性;在軟件上采用新型SVPWM控制方法,以消除死區(qū)的負面影響,另外單神經(jīng)元PID控制器應(yīng)用于速度環(huán),對速度的調(diào)節(jié)作用有明顯改善。通過軟硬件結(jié)合的方式,改善電機輸出轉(zhuǎn)矩,使電梯控制系統(tǒng)的性能得到提高。 系統(tǒng)主電路主要由三部分組成:整流部分、中間濾波部分和逆變部分,分別用6RI75G-160整流橋模塊、電解電容電路和7MBP50RA120IPM模塊實現(xiàn)。并設(shè)計有起動時防止沖擊電流的保護電路,以及防止過壓、欠壓的保護電路。其中,對逆變模塊IPM的驅(qū)動控制是控制電路的核心,也是系統(tǒng)實現(xiàn)的主要部分。控制電路以DSP為核心,由IPM驅(qū)動隔離控制電路、轉(zhuǎn)速位置檢測電路、電流檢測電路、電源電路、顯示電路和鍵盤電路組成。對IPM驅(qū)動、隔離、控制的效果,直接影響系統(tǒng)的性能,反映了變頻器的性能,所以這部分是改善變頻器性能的關(guān)鍵部分。另外,本課題擬定的被控對象是永磁同步電動機(PMSM),要對系統(tǒng)實現(xiàn)SVPWM控制,依賴于轉(zhuǎn)子位置的準確、實時檢測,只有這樣,才能實現(xiàn)正確的矢量變換,準確的輸出PWM脈沖,使合成矢量的方向與磁場方向保持實時的垂直,達到良好的控制性能,因此,轉(zhuǎn)子位置檢測是提高變頻器性能的一個重要環(huán)節(jié)。 系統(tǒng)采用的控制方式是SVPWM控制。本文從SVPWM原理入手,分析了死區(qū)時間對SVPWM控制的負面作用,采用了一種新型SVPWM控制方法,它將SVPWM的180度導(dǎo)通型和120度導(dǎo)通型結(jié)合起來,從而達到既可以消除死區(qū)影響,又可以提高電源利用率的目的。另外,在速度調(diào)節(jié)環(huán)節(jié),采用單神經(jīng)元PID控制器,通過反復(fù)的仿真證明,在調(diào)速比不是很大的情況下,其對速度環(huán)的調(diào)節(jié)作用明顯優(yōu)于傳統(tǒng)PID控制器。 通過實驗證明,系統(tǒng)基本上達到高性能的控制要求,適合于電梯控制系統(tǒng)。
上傳時間: 2013-05-21
上傳用戶:trepb001
電壓空間矢量脈沖寬度調(diào)制技術(shù)是一種性能優(yōu)越、易于數(shù)字化實現(xiàn)的脈沖寬度調(diào)制方案。在常規(guī)SVPWM算法中,判定等效電壓空間矢量所處扇區(qū)位置時需要進行坐標旋轉(zhuǎn)和反正切三角函數(shù)的運算,計算特定電壓空間矢量作用時間時需要進行正弦、余弦三角函數(shù)的運算以及過飽和情況下的歸一化處理過程,同時,在整個SVPWM算法中還包含了無理數(shù)的運算,這些復(fù)雜計算不可避免地會產(chǎn)生大量計算誤差,對高精度實時控制產(chǎn)生不可忽視的影響,而且這些復(fù)雜運算的計算量大,對系統(tǒng)的處理速度要求高,程序設(shè)計復(fù)雜,系統(tǒng)運行時間長,占用系統(tǒng)資源多。因此,從工程實際應(yīng)用的角度出發(fā),需要對常規(guī)SVPWM算法進行優(yōu)化設(shè)計。 本文提出的優(yōu)化SVPWM算法,只需進行普通的四則運算,計算非常簡單,克服了上述常規(guī)SVPWM算法中的缺點,同時,采用交叉分配零電壓空間矢量,并將零電壓空間矢量的切換點置于各扇區(qū)中點的方法,達到降低三相橋式逆變電路中開關(guān)器件開關(guān)損耗的目的。SVPWM算法要求高速的數(shù)據(jù)處理能力,傳統(tǒng)的MCU、DSP都難以滿足其要求,而具有高速數(shù)據(jù)處理能力的FPGA/CPLD則可以很好的實現(xiàn)SVPWM的控制功能,在實時性、靈活性等方面有著MCU、DSP無法比擬的優(yōu)越性。本文利用MATLAB/Simulink軟件對優(yōu)化的SVPWM系統(tǒng)原型進行建模和仿真,當仿真效果達到SVPWM系統(tǒng)控制要求后,在XilinxISE環(huán)境下采用硬件描述語言設(shè)計輸入方法與原理圖設(shè)計輸入方法相結(jié)合的混合設(shè)計輸入方法進行FPGA/CPLD的電路設(shè)計與輸入,建立相同功能的SVPWM系統(tǒng)模型,然后利用ISESimulator(VHDL/Verilog)仿真器進行功能仿真和性能分析,驗證了本文提出的SVPWM優(yōu)化設(shè)計方案的可行性和有效性。
上傳時間: 2013-07-30
上傳用戶:15953929477
隨著世界能源危機的到來,太陽能光伏發(fā)電在能源結(jié)構(gòu)中正在發(fā)揮著越來越大的作用。而太陽能光伏發(fā)電系統(tǒng)的核心部件并網(wǎng)逆變器的性能還需要進一步提高。為了迎合市場上對高品質(zhì)、高性能、智能化并網(wǎng)逆變器的需求,我們將ARM+DSP架構(gòu)作為并網(wǎng)逆變器的控制系統(tǒng)。本系統(tǒng)集成了ARM和DSP的各自的強大功能,使并網(wǎng)逆變器的性能和智能化水平得到了顯著提高。本論文是基于山東大學(xué)魯能實習(xí)基地“光伏并網(wǎng)逆變器項目”,目前已經(jīng)試制出樣機。本人主要負責并網(wǎng)逆變器控制系統(tǒng)的軟硬件設(shè)計工作。本文主要研究內(nèi)容有: @@ 1.本并網(wǎng)逆變器采用了內(nèi)高頻環(huán)逆變技術(shù)。文中詳細分析了這種逆變器的優(yōu)缺點,進行了充分的系統(tǒng)分析和論證。 @@ 2.采用MATLAB/Simulink軟件對并網(wǎng)逆變器的控制算法進行仿真,包括前級DC-DC變換的控制算法以及后級DC-AC逆變的控制算法。通過仿真驗證了所設(shè)計算法的可行性,對DSP程序開發(fā)提供了很好的指導(dǎo)意義。 @@ 3.本文將ARM+DSP架構(gòu)作為逆變器的控制系統(tǒng),并設(shè)計了相應(yīng)的硬件控制系統(tǒng)。DSP控制板硬件系統(tǒng)包括AD數(shù)據(jù)采集、硬件電流保護、電源、eCAN總線,SPI總線等硬件電路。ARM板硬件系統(tǒng)包括SPI總線、RS232總線、RS480總線、以太網(wǎng)總線、LCD顯示、實時時鐘、鍵盤等硬件電路。 @@ 4.本文設(shè)計和實現(xiàn)了兩種最大功率點跟蹤控制算法:功率擾動觀察法或增量電導(dǎo)法;孤島檢測方法采用被動式和主動式兩種檢測方式,被動式所采用的方法是將過/欠電壓和電壓相位突變檢測相結(jié)合的方式,主動式采用正反饋頻率偏移法;為了實現(xiàn)并網(wǎng)逆變器的輸出電流與電網(wǎng)電壓同頻同相,使用了軟件鎖相環(huán)控制技術(shù)。本文分別給出了以上各種算法的控制程序流程圖。 @@ 5.本文也給出了AD數(shù)據(jù)采集、eCAN總線、RS232、RS485、以太網(wǎng)、PWM輸出等程序流程圖,以及DSP和ARM之間的SPI總線通信程序流程圖。并且分別給出了ARM管理機控制系統(tǒng)主程序流程圖和DSP控制機控制系統(tǒng)主程序流程圖。 @@ 6.最后對并網(wǎng)逆變器樣機進行實驗結(jié)果分析。結(jié)果顯示:該樣機基本上實現(xiàn)了本文提出的設(shè)計方案所應(yīng)完成的各項功能,樣機的性能比較理想。 @@關(guān)鍵詞:太陽能光伏;并網(wǎng)逆變器;SPWM; DSP; ARM
上傳時間: 2013-07-09
上傳用戶:趙安qw
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1