無刷直流電機(jī)是一種性能優(yōu)越、應(yīng)用前景廣闊的電機(jī),應(yīng)用傳統(tǒng)的控制理論對其進(jìn)行控制系統(tǒng)設(shè)計、分析的技術(shù)已經(jīng)相對成熟,在此基礎(chǔ)上研發(fā)出的各種調(diào)速系統(tǒng)已經(jīng)在工業(yè)生產(chǎn)中獲得廣泛應(yīng)用。因此,無刷直流電機(jī)的進(jìn)一步推廣應(yīng)用,在很大程度上依賴于對一些先進(jìn)控制策略的研究。 為了改進(jìn)無刷直流電機(jī)調(diào)速系統(tǒng)的控制性能,本文基于灰色控制理論建立了無刷直流電機(jī)灰色PID控制調(diào)速系統(tǒng)模型。常規(guī)的PID控制以其結(jié)構(gòu)簡單、可靠性高、易于工程實現(xiàn)等優(yōu)點至今仍被廣泛采用。在系統(tǒng)模型參數(shù)變化不大的情況下,PID控制性能優(yōu)良,但無刷直流電機(jī)是一種多變量、非線性的控制系統(tǒng),傳統(tǒng)的PID控制器難以克服電機(jī)自身參數(shù)不確定和擾動帶來的轉(zhuǎn)速偏差問題,無法實現(xiàn)精確快速的控制。灰色控制器是在繼承經(jīng)典PID控制器不依賴于對象模型優(yōu)點的基礎(chǔ)上,通過改進(jìn)經(jīng)典PID固有缺陷而形成的新型控制器,性能優(yōu)良并且算法簡單。該控制器設(shè)計不需要建立電機(jī)的精確數(shù)學(xué)模型,對參數(shù)變化和負(fù)載擾動不敏感。系統(tǒng)較好地實現(xiàn)了給定速度參考模型的自適應(yīng)跟蹤,結(jié)構(gòu)簡單,能適應(yīng)環(huán)境變化,具有較強(qiáng)的魯棒性。 本文以灰色系統(tǒng)理論為基礎(chǔ),把無刷直流電機(jī)的數(shù)學(xué)模型分為確定部分與不確定部分,對被控對象的不確定部分建立灰色模型,進(jìn)行灰色預(yù)估補(bǔ)償,使控制系統(tǒng)的灰量得到一定程度的白化。對所提出的無刷直流電機(jī)灰色PID控制調(diào)速系統(tǒng)進(jìn)行了仿真,對仿真結(jié)果給出理論分析;以TMS320F2812型DSP為核心控制器建立了無刷直流電機(jī)調(diào)速驅(qū)動系統(tǒng)。仿真和實驗結(jié)果表明,基于灰色PID控制算法的無刷直流電機(jī)調(diào)速系統(tǒng)受電機(jī)參數(shù)變化影響較小,具有較高的控制精度和魯棒性,表現(xiàn)出優(yōu)良的動、靜態(tài)性能。
標(biāo)簽: 控制 無刷 直流電機(jī)調(diào)速
上傳時間: 2013-04-24
上傳用戶:lyy1234
混合動力電動汽車(HEV)作為降低城市汽車尾氣污染、減少油耗和調(diào)整能源結(jié)構(gòu)的行業(yè)新技術(shù),前景十分廣闊,日益受到人們的關(guān)注,其開發(fā)也成為新的熱點。驅(qū)動電機(jī)及其控制系統(tǒng)是HEV的核心部分,其性能的優(yōu)劣很大程度上決定了車輛的動態(tài)性能,因此對其進(jìn)行研究具有重要的理論意義和應(yīng)用價值。 本文主要研究混合動力車用交流驅(qū)動電機(jī)控制系統(tǒng),以高性能的數(shù)字信號處理器(DSP)為核心,采用轉(zhuǎn)子磁鏈定向矢量控制(FOC)算法,設(shè)計了一種基于DSP的交流驅(qū)動電機(jī)控制器。主要研究內(nèi)容如下: 首先,在分析國內(nèi)外研究狀況和比較幾種常用驅(qū)動電機(jī)的基礎(chǔ)上,結(jié)合HEV對驅(qū)動電機(jī)的特性要求,選擇交流異步電機(jī)作為HEV的驅(qū)動電機(jī)和基于轉(zhuǎn)子磁鏈定向的矢量控制技術(shù)作為系統(tǒng)開發(fā)方案。 其次,以交流異步電機(jī)的動態(tài)數(shù)學(xué)模型為基礎(chǔ)建立了轉(zhuǎn)子磁鏈位置的電流計算模型,實現(xiàn)交流電機(jī)轉(zhuǎn)矩和勵磁電流分量的有效解耦。結(jié)合矢量控制理論及電壓空間矢量脈寬調(diào)制(SVPWM)技術(shù)給出了混合動力車用驅(qū)動電機(jī)矢量控制系統(tǒng)結(jié)構(gòu)框圖。 最后,以一臺5kw異步電機(jī)作為控制對象,搭建了系統(tǒng)主電路。系統(tǒng)控制電路以TMS32OLF2407A DSP為核心,由電流、電壓及速度等檢測模塊和CAN總線通信模塊組成。系統(tǒng)以CCS2集成開發(fā)環(huán)境為平臺,采用匯編語言編程,設(shè)計了基于DSP的矢量控制具體的軟件實現(xiàn)方法,實現(xiàn)了全數(shù)字化的HEV驅(qū)動電機(jī)矢量控制系統(tǒng)。論文給出了驅(qū)動電機(jī)運行的調(diào)試結(jié)果并進(jìn)行了分析。 實驗表明該控制系統(tǒng)響應(yīng)速度快,電壓利用率高,動態(tài)性能好,能夠滿足HEV對驅(qū)動電機(jī)動態(tài)和靜態(tài)性能的要求,對開發(fā)出低成本、高性能的電機(jī)驅(qū)動控制系統(tǒng)具有實用價值。
上傳時間: 2013-07-06
上傳用戶:banyou
在伺服系統(tǒng)中,為了實現(xiàn)高精度的控制,往往需要實時地檢測出電動機(jī)轉(zhuǎn)子的位置。用來檢測電動機(jī)轉(zhuǎn)子位置的角度傳感器主要有光電編碼器和旋轉(zhuǎn)變壓器。光電編碼器雖然能夠達(dá)到很高的精度,但是它的抗干擾性差,不宜應(yīng)用在條件惡劣的場合中;相比較而言,旋轉(zhuǎn)變壓器(簡稱旋變)由于結(jié)構(gòu)簡單,堅固耐用,抗干擾性強(qiáng),能夠應(yīng)用在各種條件惡劣的場合中,所以獲得了越來越廣泛的應(yīng)用。 本文采用的旋變樣機(jī)是一種新型的磁阻式旋轉(zhuǎn)變壓器。分析了它的定轉(zhuǎn)子結(jié)構(gòu)、定子繞組的連接方式以及轉(zhuǎn)子形狀的優(yōu)化;并在此基礎(chǔ)上,推導(dǎo)出了它的正余弦輸出反電勢的表達(dá)式;最后在電磁場分析軟件Ansoft中,以樣機(jī)為原型建立了仿真模型,分析了它內(nèi)部的電磁場分布以及正余弦輸出反電勢的波形。 其次,本文設(shè)計了一種以DSP為核心的R2D電路系統(tǒng)。它以振蕩電路產(chǎn)生的正弦波電壓信號作為旋變的激勵信號,加上相關(guān)的外圍電路,構(gòu)成了旋轉(zhuǎn)變壓器一數(shù)字轉(zhuǎn)換器,解算出了旋變的軸角θ;并在此基礎(chǔ)上,分析了產(chǎn)生角度解算誤差的各種因素,同時計算出了旋變的轉(zhuǎn)速n。 最后,在上述解算方案的基礎(chǔ)上,本文又給出了第二種解算方案,即:DSP產(chǎn)生的方波經(jīng)過濾波之后作為旋變的激勵信號,解算出了旋變的軸角θ;然后比較了這兩種解算方案的優(yōu)缺點,重點分析了激勵信號中的諧波分量對正余弦輸出反電勢以及角度解算的影響。
標(biāo)簽: R2D 旋轉(zhuǎn)變壓器 電路
上傳時間: 2013-04-24
上傳用戶:pioneer_lvbo
在早期階段,直流調(diào)速系統(tǒng)在傳動領(lǐng)域中占統(tǒng)治地位。然而,從60年代后期開始,交流電動機(jī)在工業(yè)應(yīng)用領(lǐng)域正在取代直流電動機(jī),交流傳動變得越來越經(jīng)濟(jì)和受歡迎。永磁交流伺服系統(tǒng)作為電氣傳動領(lǐng)域的重要組成部分,在工業(yè)、農(nóng)業(yè)、航空航天等領(lǐng)域發(fā)揮越來越重大的作用。永磁同步電動機(jī)以其特點廣泛應(yīng)用于中小功率傳動場合,成為研究的重要領(lǐng)域。然而,永磁同步電動機(jī)具有較大的轉(zhuǎn)動脈動,而對于這些應(yīng)用場合,轉(zhuǎn)矩平滑通常是基本要求。因此,對永磁交流伺服系統(tǒng)的應(yīng)用,必須考慮其轉(zhuǎn)矩脈動的抑制問題。本文針對電機(jī)傳動系統(tǒng)中參數(shù)變化對電機(jī)性能的影響,以永磁同步電機(jī)為例,圍繞如何通過參數(shù)辨識來提高永磁同步電動機(jī)的控制性能,借助自行開發(fā)的全數(shù)字永磁交流伺服系統(tǒng)平臺,對永磁同步電動機(jī)的磁場定向控制,參數(shù)辨識,神經(jīng)網(wǎng)絡(luò)和擴(kuò)展卡爾曼濾波在控制系統(tǒng)中的應(yīng)用,抑制轉(zhuǎn)矩脈動,提高系統(tǒng)性能幾個方面展開深入的研究。 本文從永磁同步電動機(jī)及其控制系統(tǒng)的基本結(jié)構(gòu)出發(fā),對通過參數(shù)辨識抑制轉(zhuǎn)矩脈動進(jìn)行了較為細(xì)致的分析。針對不同情況,通過改進(jìn)電機(jī)的控制系統(tǒng),提出了多種參數(shù)辨識方法。主要內(nèi)容如下: 1、基于定子磁鏈方程,建立了永磁同步電動機(jī)的一般數(shù)學(xué)模型。經(jīng)坐標(biāo)變換,得出在靜止兩相(α—β)坐標(biāo)系和旋轉(zhuǎn)兩相(d—q)坐標(biāo)系下永磁同步電動機(jī)電壓方程和轉(zhuǎn)矩方程。 2、分析了永磁同步電動機(jī)id=0矢量控制系統(tǒng)的工作原理,介紹了永磁同步電動基于磁場定向的矢量控制的基本概念。經(jīng)對永磁同步電動機(jī)系統(tǒng)進(jìn)行分析,推導(dǎo)并建立了id=0控制時整個電機(jī)系統(tǒng)的數(shù)學(xué)模型。 3、基于超穩(wěn)定性理論的模型參考自適應(yīng)控制原理,設(shè)計了一種模型參考自適應(yīng)控制系統(tǒng),考慮電機(jī)參數(shù)的時變性,對永磁交流伺服系統(tǒng)的繞組電阻和電機(jī)負(fù)載轉(zhuǎn)矩辨識進(jìn)行了研究,以保持系統(tǒng)的動態(tài)性能。利用Matlab/Simulink建立仿真模型,對控制性能進(jìn)行了驗證,仿真實驗證明這種方法的可行性。 4、人工神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的學(xué)習(xí)性能,經(jīng)過訓(xùn)練的多層神經(jīng)網(wǎng)絡(luò)能以任意精度逼近非線性函數(shù),因此為非線性系統(tǒng)辨識提供了一個強(qiáng)有力的工具。本章針對永磁同步電機(jī)提出了一種以電機(jī)輸出轉(zhuǎn)速為目標(biāo)函數(shù)的神經(jīng)網(wǎng)絡(luò)控制方案,同時應(yīng)用人工神經(jīng)網(wǎng)絡(luò)理論建立和設(shè)計了負(fù)載轉(zhuǎn)矩擾動辨識的算法以及相應(yīng)的控制系統(tǒng)的補(bǔ)償方法,并應(yīng)用MATLAB軟件進(jìn)行了計算機(jī)仿真,仿真證明和傳統(tǒng)的控制方法相比,以電機(jī)輸出轉(zhuǎn)速為指導(dǎo)值和目標(biāo)函數(shù)的神經(jīng)網(wǎng)絡(luò)控制方案能有效地提高神經(jīng)網(wǎng)絡(luò)的收斂速度,能有效地改善控制系統(tǒng)的動態(tài)響應(yīng),具有跟蹤性能好和魯棒性較強(qiáng)等優(yōu)點。 5、電機(jī)的參數(shù)會隨著溫升和磁路飽和發(fā)生變化,需進(jìn)行在線實時辨識。本文利用電機(jī)的定子電流、電壓和轉(zhuǎn)速,采用遞推最小二乘法進(jìn)行在線參數(shù)辨識,該方法不需要觀測的磁鏈信號,消除了磁鏈觀測和參數(shù)辨識的耦合。電機(jī)狀態(tài)方程由于存在狀態(tài)變量的乘積項,對電機(jī)參數(shù)辨識以后,仍然是非線性方程,為了對電機(jī)狀態(tài)方程進(jìn)行狀態(tài)估計,得到電機(jī)的參數(shù)辨識值,本文采用擴(kuò)展卡爾曼濾波進(jìn)行狀態(tài)估計,對以上方法的仿真實驗得到了滿意的結(jié)果。 6、本文基于數(shù)字電機(jī)控制專用DSP自行開發(fā)了全數(shù)字永磁交流伺服系統(tǒng)平臺,通過軟件實現(xiàn)擴(kuò)展卡爾曼濾波對電阻和磁鏈的估計,以及基于磁場定向的空間矢量控制算法,獲得了令人滿意的實驗結(jié)果,證明擴(kuò)展卡爾曼濾波算法對電阻和磁鏈的實時估計是很準(zhǔn)確的,由此構(gòu)成的永磁交流伺服系統(tǒng)具有良好的靜、動態(tài)性能。
標(biāo)簽: 電機(jī) 傳動系統(tǒng) 參數(shù)辨識
上傳時間: 2013-07-28
上傳用戶:鳳臨西北
永磁同步電動機(jī)交流伺服系統(tǒng)作為交流伺服系統(tǒng)的主流,在工業(yè)生產(chǎn)自動化領(lǐng)域中應(yīng)用廣泛、前景廣闊。永磁同步伺服電動機(jī)作為伺服系統(tǒng)的執(zhí)行機(jī)構(gòu),其性能的優(yōu)劣在很大程度上決定了整個伺服系統(tǒng)的性能。因此,精心設(shè)計性能優(yōu)異的永磁同步伺服電動機(jī)具有重要的理論意義和應(yīng)用價值。本課題系統(tǒng)研究了永磁同步伺服電動機(jī)的本體設(shè)計,包括設(shè)計方法、性能計算、有限元分析、參數(shù)計算、控制仿真、實驗測試等。 首先,綜述和分析了永磁同步伺服電動機(jī)的研究現(xiàn)狀、存在問題和發(fā)展前景,研究了永磁同步伺服電動機(jī)的設(shè)計特點和方法。開發(fā)了永磁同步伺服電動機(jī)的電磁計算程序,結(jié)合有限元計算數(shù)值的校正,完成對樣機(jī)的性能計算,計算結(jié)果較為準(zhǔn)確。 接著,深入分析永磁同步伺服電動機(jī)的氣隙磁場,得到充磁方式、極弧系數(shù)、不均勻氣隙、永磁體厚度等因素對氣隙磁場的影響,繪制了各因素對氣隙磁場基波和諧波總量影響的曲線,通過優(yōu)化設(shè)計,得到了明顯改善的正弦氣隙磁場。并拓展研究總結(jié)了不同永磁體形狀和尺寸對永磁直流電動機(jī)在換向和性能上的影響,取得有實用價值的研究成果。 然后,基于Ansoft、MagNet電磁分析軟件建立了永磁同步伺服電動機(jī)的有限元分析模型,深入研究了電機(jī)的反電勢波形、穩(wěn)態(tài)運行性能和齒槽轉(zhuǎn)矩,計算了直、交軸同步電抗等重要參數(shù)。建立了永磁同步伺服電動機(jī)Id=0控制的Matlab/simulink仿真模型,并進(jìn)行了仿真研究。 最后,對永磁同步伺服電動機(jī)進(jìn)行了實驗測試和分析,包括反電勢波形與磁場波形測試、性能曲線測試、直交軸同步電抗的測量。對測試結(jié)果與設(shè)計結(jié)果進(jìn)行了比較分析,驗證了設(shè)計方法的正確性。
上傳時間: 2013-08-04
上傳用戶:qazwsxedc
永磁同步發(fā)電機(jī)由于一系列高效節(jié)能的優(yōu)點,在工農(nóng)業(yè)生產(chǎn)、航空航天、國防和日常生活中得到廣泛應(yīng)用,并且受到許多學(xué)者的關(guān)注,其研究領(lǐng)域主要涉及永磁同步發(fā)電機(jī)的設(shè)計、精確性能分析、控制等方面。 本課題作為國家自然科學(xué)基金項目《無刷無勵磁機(jī)諧波勵磁的混合勵磁永磁電機(jī)的研究》的課題,主要研究永磁電機(jī)的電磁場空載和負(fù)載計算,求出永磁電機(jī)的電壓波形和電壓調(diào)整率,為分段式轉(zhuǎn)子的混合勵磁永磁電機(jī)的研究奠定基礎(chǔ),主要做了以下工作: 首先介紹了永磁同步發(fā)電機(jī)的基本原理,包括永磁同步發(fā)電機(jī)的結(jié)構(gòu)形式和永磁同步發(fā)電機(jī)的運行性能,采用傳統(tǒng)解析理論給出了電壓調(diào)整率的計算方法及外特性的計算模型;然后用有限元ANSYS對永磁同步發(fā)電機(jī)樣機(jī)進(jìn)行實體建模,經(jīng)過定義分配材料、劃分網(wǎng)格、加邊界條件和載荷、求解計算等,得到矢量磁位Az、磁場強(qiáng)度H、磁感應(yīng)強(qiáng)度B等結(jié)果,直觀地看出電機(jī)內(nèi)部的磁場分布情況。 其次根據(jù)電磁場計算結(jié)果,應(yīng)用齒磁通法對其進(jìn)行后處理。該方法求解轉(zhuǎn)子在一個齒距內(nèi)不同位置處的磁場,以定子齒的磁通為計算單位,根據(jù)繞組與齒的匝鏈關(guān)系,計算出磁鏈隨時間的變化,進(jìn)而得到永磁同步發(fā)電機(jī)空、負(fù)載時電壓大小及波形。通過計算結(jié)果寫實驗結(jié)果對比,驗證了齒磁通法的正確性,為計算永磁同步發(fā)電機(jī)各種性能特性提供有力工具。 最后,基于齒磁通法對永磁同步發(fā)電機(jī)的外特性進(jìn)行了深入研究,定量分析了結(jié)構(gòu)參數(shù)對外特性的影響規(guī)律,提出了有效降低電壓調(diào)整率的方法的是:增加氣隙長度g的同時,適當(dāng)增加永磁體的磁化方向的長度hm;此外,要盡量的減少每相串聯(lián)匝數(shù)N和增大導(dǎo)線面積以減小阻抗參數(shù)。通過改變電機(jī)的結(jié)構(gòu)參數(shù),對其電磁場進(jìn)行計算,找到永磁電機(jī)電壓調(diào)整率的變化規(guī)律,為加電勵磁的混合勵磁永磁電機(jī)做準(zhǔn)備,達(dá)到穩(wěn)定輸出電壓的目的。
標(biāo)簽: 永磁同步 發(fā)電機(jī) 磁場分析
上傳時間: 2013-04-24
上傳用戶:15853744528
在傳統(tǒng)的直線驅(qū)動場合,都是由旋轉(zhuǎn)電機(jī)提供原動力,再由絲杠、絲桿、齒條等中間機(jī)構(gòu)轉(zhuǎn)換為直線運動。這樣的設(shè)置,不僅在中間傳動過程中消耗了大量的能量,而且摩擦產(chǎn)生的噪聲也非常明顯,同時也給系統(tǒng)的維護(hù)工作帶來了麻煩。 直線電機(jī)的出現(xiàn)可以使上述問題得到解決,由于具備直接將電能轉(zhuǎn)化為直線運動的能力,直線電機(jī)已經(jīng)在機(jī)床驅(qū)動、集成電路組裝等場合逐漸取代了傳統(tǒng)的旋轉(zhuǎn)電機(jī)的位置。 自19世紀(jì)中期直線電機(jī)的概念被首次提出以來,經(jīng)過孕育、實驗、開發(fā)和實用這四個階段的發(fā)展,并借助于電力電子技術(shù),以及日漸成熟的直線電機(jī)控制技術(shù),直線電機(jī)已經(jīng)廣泛應(yīng)用到了制造業(yè)、交通運輸業(yè)等各個方面。 與旋轉(zhuǎn)電機(jī)類似,按工作原理的不同,直線電機(jī)也有著各種類型,應(yīng)用較多的是直線步進(jìn)電機(jī)、直線同步電機(jī)和直線感應(yīng)電機(jī)。其中直線步進(jìn)電機(jī)更多的是應(yīng)用在需要精確定位的場合,比如半導(dǎo)體工業(yè);后兩者則被應(yīng)用在需要連續(xù)和大推力的場合,比如機(jī)床。而直線同步電機(jī),尤其是永磁直線同步電機(jī),憑借更大的單位面積推力、更高的效率等優(yōu)點受到了更多的青睞,與此同時,由于沒有了勵磁繞組,電機(jī)的整個結(jié)構(gòu)也得以簡化。另一方面,我國豐富的稀土資源也為這種電機(jī)的發(fā)展提供了廣泛空間。 作為一種較為新穎的電機(jī),目前國內(nèi)仍缺乏系統(tǒng)化的永磁直線同步電機(jī)設(shè)計方案,尤其是電樞繞組部分。常用的方法仍是基于傳統(tǒng)的旋轉(zhuǎn)電機(jī),例如使用雙層疊繞組方案。通過對實際電機(jī)的軟件模擬,我們發(fā)現(xiàn)這樣的設(shè)計思路的表現(xiàn)并不能令人滿意,比如造成了動子線圈槽滿率過大,電機(jī)設(shè)計難以形成系列化等缺點,而電機(jī)本身輸出推力的波動也較大。 針對傳統(tǒng)方案的一系列缺點,本文提出了一種新的永磁直線同步電機(jī)設(shè)計方案。該方案基于“單元電機(jī)”的概念,使用單層同心式線圈。當(dāng)目標(biāo)推力要求變化時,只需改變“單元電機(jī)”的數(shù)目和排列組合的方式,就可以達(dá)到改變的目的。而每個單元中的繞組連接方式則不需要改變,由此避免了繁瑣而復(fù)雜的繞組設(shè)計,這就給電機(jī)的系列化設(shè)計帶來了便捷。同時,單層繞組的使用也更方便嵌線,也更有利于降低銅耗,提高效率。 在完成單元電機(jī)設(shè)計任務(wù)的基礎(chǔ)上,本文利用加拿大Infolytica公司出品的電磁場有限元分析軟件MagNet對電機(jī)的運行進(jìn)行了模擬,并得到了電機(jī)的額定輸出推力曲線和反電動勢曲線,輸出推力曲線較之傳統(tǒng)方案也更平穩(wěn)。體現(xiàn)了該設(shè)計方案的優(yōu)越性。
上傳時間: 2013-06-29
上傳用戶:pinksun9
低壓電器電弧運動過程三維成像理論及運動機(jī)理研究在國內(nèi)外取得了一定的進(jìn)展,但作為一種新型電弧研究方法,特別是對電弧運動可視化方面的研究尚處于起步階段,其技術(shù)涉及到電器學(xué)、數(shù)值計算、圖像處理、計算機(jī)科學(xué)等眾多學(xué)科領(lǐng)域,加之電弧復(fù)雜的非線性特性及其瞬時特性,導(dǎo)致測量研究的困難,在電弧機(jī)理、性能分析和模型設(shè)計等方面都還不夠成熟、完善。所以,在電弧模型理論研究、電器電磁機(jī)構(gòu)的三維有限元分析、電器的計算機(jī)輔助設(shè)計、電弧動態(tài)特性研究等方面,存在大量的工作要做。對這些問題的深入研究,可以更好地認(rèn)識電器觸頭在整個運動過程中極其復(fù)雜的電、熱、磁、機(jī)械等一系列現(xiàn)象。 為了從不同角度觀察分析電弧在滅弧室中的動態(tài)運動過程,本文在研究開關(guān)電器電弧圖像增強(qiáng)及運動過程三維可視化的基礎(chǔ)上,分析電弧形成機(jī)理、電弧特性和運動形態(tài)的基本理論,進(jìn)一步考慮其模型特性和電弧等離子體磁壓縮效應(yīng),建立其運動數(shù)學(xué)模型。電弧圖像需要的處理主要有:圖像數(shù)字化、圖像平滑、圖像分割、圖像邊緣檢測、圖像增強(qiáng)。本文提出一種基于小波變換的圖像增強(qiáng)和直方圖的圖像增強(qiáng)算法,在保留電弧弧柱強(qiáng)特征的同時,突出顯示電器動觸頭圖像特征使增強(qiáng)后的電弧圖像適合人類的視覺特征,為電弧動態(tài)過程分析和電弧可視化模型的構(gòu)建提供有效的分析基礎(chǔ),并取得良好的電弧圖像增強(qiáng)效果。本文構(gòu)造了基于比色測溫原理的電弧輻射拾取、圖像采集、同步控制、數(shù)據(jù)處理等硬件裝置,對試驗采集裝置進(jìn)行了標(biāo)定;將醫(yī)學(xué)上成功應(yīng)用的計算機(jī)層析成像理論,應(yīng)用于對電弧進(jìn)行三維溫度場重建的研究,構(gòu)造可單面陣CCD采集三組六路投影輻射強(qiáng)度的實驗裝置,通過對觸頭邊緣檢測的手段精確定位于不同光路中電弧的位置,對輻射拾取光路進(jìn)行校準(zhǔn),編制了系統(tǒng)軟件,實現(xiàn)電弧三維溫度場的重建。研究數(shù)學(xué)模擬計算方法,提出了適合低壓電器電弧數(shù)學(xué)模型計算的方法。用計算機(jī)求解獲得以前依靠實驗才能獲得的開斷波形及運動過程,將理論分析、試驗研究和計算機(jī)仿真有機(jī)結(jié)合起來,使產(chǎn)品設(shè)計更加科學(xué)和準(zhǔn)確,可以大大減少設(shè)計周期,減少試驗的盲目性和費用,有利于提高電器產(chǎn)品的技術(shù)性能,對于新產(chǎn)品開發(fā),優(yōu)化滅弧室設(shè)計及模擬實驗,具有十分重要的意義。
上傳時間: 2013-04-24
上傳用戶:cngeek
矢量控制一直是電機(jī)控制領(lǐng)域的熱門話題。本文以異步電機(jī)為研究對象,以矢量控制的解耦思想為基礎(chǔ),采用自動控制的有關(guān)方法,對矢量控制進(jìn)行了探討,著重研究了矢量控制系統(tǒng)中控制器的設(shè)計。 @@ 本文對矢量控制和自動控制的相關(guān)理論進(jìn)行了簡單的介紹,包括矢量控制的原理、坐標(biāo)變換、控制系統(tǒng)的性能指標(biāo)等。按照矢量控制的解耦思想將耦合的交流電機(jī)模擬為解耦的直流電機(jī)進(jìn)行控制,解耦后的交流電機(jī)可對轉(zhuǎn)子磁鏈和轉(zhuǎn)速進(jìn)行獨立控制。在設(shè)計磁鏈控制器和速度控制器時,通過使用自動控制的相關(guān)原理,使得轉(zhuǎn)子磁鏈和電機(jī)轉(zhuǎn)速達(dá)到了預(yù)期的性能要求。本文使用的設(shè)計方法是先在連續(xù)域下設(shè)計控制器,然后將其離散化為數(shù)字控制器,并對連續(xù)域下的控制器和離散域下的控制器進(jìn)行了仿真和比較。電機(jī)轉(zhuǎn)速是本文的一個重要參數(shù),文中專門設(shè)計了轉(zhuǎn)速實驗,并對測量結(jié)果進(jìn)行了誤差分析。最后,對本文設(shè)計方法的不足之處進(jìn)行了簡單的說明,也給出了對應(yīng)的改善方法。 @@ 仿真表明,本文設(shè)計的矢量控制系統(tǒng)達(dá)到了良好的控制效果。 @@關(guān)鍵字:矢量控制、磁鏈調(diào)節(jié)器、速度調(diào)節(jié)器
標(biāo)簽: 異步電機(jī) 分 矢量控制系統(tǒng)
上傳時間: 2013-06-17
上傳用戶:edrtbme
隨著電力電子技術(shù)、微處理器技術(shù)以及控制技術(shù)的發(fā)展,基于轉(zhuǎn)子磁鏈定向的交流電機(jī)矢量控制系統(tǒng)以其優(yōu)良的性能受到了廣泛應(yīng)用。采用SVPWM逆變器的異步電動機(jī)矢量控制系統(tǒng)在轉(zhuǎn)速參考值變化或者負(fù)載轉(zhuǎn)矩參考值變化的動態(tài)情況下,參考電壓矢量可能會超出基本空間矢量構(gòu)成的正六邊形,此時便出現(xiàn)動態(tài)過調(diào)制,需要用過調(diào)制策略將超出的電壓矢量重新限定在正六邊形邊界內(nèi)。不同的過調(diào)制策略會給整個系統(tǒng)帶來不同的動態(tài)性能,本文在對過調(diào)制策略進(jìn)行完善的基礎(chǔ)上,針對三種過調(diào)制策略對交流電動機(jī)動態(tài)性能的影響進(jìn)行了研究,并對其機(jī)理進(jìn)行了理論分析與探討。 @@ 本文首先以三相異步電動機(jī)在兩相靜止坐標(biāo)系下的動態(tài)方程為基礎(chǔ),按照轉(zhuǎn)子磁鏈定向,設(shè)計了轉(zhuǎn)子磁鏈觀測器,完成了勵磁電流分量和轉(zhuǎn)矩電流分量的解耦,并構(gòu)建了基于SVPWM的異步電動機(jī)矢量控制系統(tǒng)的MATLAB仿真模型。在矢量控制中,電流控制對系統(tǒng)性能具有重要影響。為了改善系統(tǒng)性能,所設(shè)計的矢量控制系統(tǒng)采用了同步電流控制,并對反電勢進(jìn)行了前饋補(bǔ)償。 @@ 在分析了現(xiàn)有的三種過調(diào)制策略之后,對過調(diào)制策略進(jìn)行了完善,并構(gòu)建了異步電動機(jī)矢量控制系統(tǒng)的過調(diào)制仿真模型。過調(diào)制中,當(dāng)原參考電壓矢量位于正六邊形中任意兩個扇區(qū)交界附近時,過調(diào)制策略2和3所得到的新電壓矢量仍會超出正六邊形邊界,過調(diào)制算法不再適用于此區(qū)域。針對以上不足,本文對過調(diào)制策略2和3進(jìn)行了完善,使過調(diào)制算法適用于所有區(qū)域。采用完善后的過調(diào)制策略對轉(zhuǎn)速參考值變化和負(fù)載轉(zhuǎn)矩參考值變化的異步電動機(jī)矢量控制系統(tǒng)進(jìn)行仿真,發(fā)現(xiàn)在加速與加載的條件下,過調(diào)制策略2的動態(tài)性能好于過調(diào)制策略1,而過調(diào)制策略3的動態(tài)性能最佳,具有最小的動態(tài)響應(yīng)時間,暫態(tài)性能優(yōu)良;在減載的條件下,過調(diào)制策略1和2能夠很快的進(jìn)入穩(wěn)定狀態(tài),但是過調(diào)制策略3卻出現(xiàn)問題,動態(tài)響應(yīng)時間很長,說明此策略具有一定的局限性。 @@ 本文深入探討了三種過調(diào)制策略導(dǎo)致不同動態(tài)性能的內(nèi)在機(jī)理,通過對三種過調(diào)制策略中電壓矢量的幅值和相位進(jìn)行分析,理論上解釋了出現(xiàn)不同動態(tài)響應(yīng)時間的原因。出現(xiàn)過調(diào)制時,過調(diào)制策略2中新電壓矢量的幅值總是大于過調(diào)制策略1中新電壓矢量的幅值,所以動態(tài)性能更好。在加速和加 載條件下,過調(diào)制策略3中新電壓矢量的相位總是超前于過調(diào)制策略1和2中新電壓矢量的相位,因此可以獲得更快的動態(tài)響應(yīng),暫態(tài)性能更佳。但是在減載條件下,過調(diào)制策略3中新電壓矢量與原電壓矢量間的相位關(guān)系處于無規(guī)律的超前滯后狀態(tài),導(dǎo)致過調(diào)制策略3出現(xiàn)問題,動態(tài)響應(yīng)時間很長,說明此過調(diào)制策略有其不足之處,有待于改進(jìn)。@@關(guān)鍵詞:SVPWM;矢量控制;過調(diào)制;動態(tài)性能
上傳時間: 2013-06-27
上傳用戶:nunnzhy
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1