PHDIFF函數(shù)是matlab函數(shù),用于尋找兩個(gè)震蕩子的相位差
標(biāo)簽: PHDIFF matlab 函數(shù)
上傳時(shí)間: 2013-12-20
上傳用戶:youke111
單相全橋的MATLAB仿真界面,包括脈沖信號的產(chǎn)生,都是子模塊形式
上傳時(shí)間: 2017-08-21
上傳用戶:ommshaggar
鄰域算子改進(jìn)的pso ,matlab程序
標(biāo)簽: pso
上傳時(shí)間: 2017-08-31
上傳用戶:playboys0
基于matlab來描述靜電場的分布,基于matlab描述電偶極子的分布。
上傳時(shí)間: 2017-09-13
上傳用戶:2525775
提供了4-psk的matlab源程序包,包括主函數(shù)和子函數(shù),可供初學(xué)者學(xué)習(xí)參考。
上傳時(shí)間: 2017-09-20
上傳用戶:bruce5996
用MATLAB求解無約束的問題,主要有最速下降法,牛頓法,共軛梯度法,變尺度法(DFP和BFGS法),非線性最小二乘法。 用MATLAB求解有約束的問題,主要是外懲罰函數(shù)和廣義乘子法。 以及一些對具體問題的分析,MATLAB的代碼在文檔里都有。
標(biāo)簽: MATLAB
上傳時(shí)間: 2017-09-28
上傳用戶:youth25
子波整形,matlab小例子,根據(jù)資料整理
標(biāo)簽: 子波整形
上傳時(shí)間: 2015-04-06
上傳用戶:zhangjianhao
遺傳算法為群體優(yōu)化算法,也就是從多個(gè)初始解開始進(jìn)行優(yōu)化,每個(gè)解稱為一個(gè)染色體,各染色體之間通過競爭、合作、單獨(dú)變異,不斷進(jìn)化。 優(yōu)化時(shí)先要將實(shí)際問題轉(zhuǎn)換到遺傳空間,就是把實(shí)際問題的解用染色體表示,稱為編碼,反過程為解碼,因?yàn)閮?yōu)化后要進(jìn)行評價(jià),所以要返回問題空間,故要進(jìn)行解碼。SGA采用二進(jìn)制編碼,染色體就是二進(jìn)制位串,每一位可稱為一個(gè)基因;解碼時(shí)應(yīng)注意將染色體解碼到問題可行域內(nèi)。 遺傳算法模擬“適者生存,優(yōu)勝劣汰”的進(jìn)化機(jī)制,染色體適應(yīng)生存環(huán)境的能力用適應(yīng)度函數(shù)衡量。對于優(yōu)化問題,適應(yīng)度函數(shù)由目標(biāo)函數(shù)變換而來。一般遺傳算法求解最大值問題,如果是最小值問題,則通過取倒數(shù)或者加負(fù)號處理。SGA要求適應(yīng)度函數(shù)>0,對于<0的問題,要通過加一個(gè)足夠大的正數(shù)來解決。這樣,適應(yīng)度函數(shù)值大的染色體生存能力強(qiáng)。 遺傳算法有三個(gè)進(jìn)化算子:選擇(復(fù)制)、交叉和變異。 SGA中,選擇采用輪盤賭方法,也就是將染色體分布在一個(gè)圓盤上,每個(gè)染色體占據(jù)一定的扇形區(qū)域,扇形區(qū)域的面積大小和染色體的適應(yīng)度大小成正比。如果輪盤中心裝一個(gè)可以轉(zhuǎn)動的指針的話,旋轉(zhuǎn)指針,指針停下來時(shí)會指向某一個(gè)區(qū)域,則該區(qū)域?qū)?yīng)的染色體被選中。顯然適應(yīng)度高的染色體由于所占的扇形區(qū)域大,因此被選中的幾率高,可能被選中多次,而適應(yīng)度低的可能一次也選不中,從而被淘汰。算法實(shí)現(xiàn)時(shí)采用隨機(jī)數(shù)方法,先將每個(gè)染色體的適應(yīng)度除以所有染色體適應(yīng)度的和,再累加,使他們根據(jù)適應(yīng)度的大小分布于0-1之間,適應(yīng)度大的占的區(qū)域大,然后隨機(jī)生成一個(gè)0-1之間的隨機(jī)數(shù),隨機(jī)數(shù)落到哪個(gè)區(qū)域,對應(yīng)的染色體就被選中。重復(fù)操作,選出群體規(guī)模規(guī)定數(shù)目的染色體。這個(gè)操作就是“優(yōu)勝劣汰,適者生存”,但沒有產(chǎn)生新個(gè)體。 交叉模擬有性繁殖,由兩個(gè)染色體共同作用產(chǎn)生后代,SGA采用單點(diǎn)交叉。由于SGA為二進(jìn)制編碼,所以染色體為二進(jìn)制位串,隨機(jī)生成一個(gè)小于位串長度的隨機(jī)整數(shù),交換兩個(gè)染色體該點(diǎn)后的那部分位串。參與交叉的染色體是輪盤賭選出來的個(gè)體,并且還要根據(jù)選擇概率來確定是否進(jìn)行交叉(生成0-1之間隨機(jī)數(shù),看隨機(jī)數(shù)是否小于規(guī)定的交叉概率),否則直接進(jìn)入變異操作。這個(gè)操作是產(chǎn)生新個(gè)體的主要方法,不過基因都來自父輩個(gè)體。 變異采用位點(diǎn)變異,對于二進(jìn)制位串,0變?yōu)?,1變?yōu)?就是變異。采用概率確定變異位,對每一位生成一個(gè)0-1之間的隨機(jī)數(shù),看是否小于規(guī)定的變異概率,小于的變異,否則保持原狀。這個(gè)操作能夠使個(gè)體不同于父輩而具有自己獨(dú)立的特征基因,主要用于跳出局部極值。 遺傳算法認(rèn)為生物由低級到高級進(jìn)化,后代比前一代強(qiáng),但實(shí)際操作中可能有退化現(xiàn)象,所以采用最佳個(gè)體保留法,也就是曾經(jīng)出現(xiàn)的最好個(gè)體,一定要保證生存下來,使后代至少不差于前一代。大致有兩種類型,一種是把出現(xiàn)的最優(yōu)個(gè)體單獨(dú)保存,最后輸出,不影響原來的進(jìn)化過程;一種是將最優(yōu)個(gè)體保存入子群,也進(jìn)行選擇、交叉、變異,這樣能充分利用模式,但也可能導(dǎo)致過早收斂。 由于是基本遺傳算法,所以優(yōu)化能力一般,解決簡單問題尚可,高維、復(fù)雜問題就需要進(jìn)行改進(jìn)了。 下面為代碼。函數(shù)最大值為3905.9262,此時(shí)兩個(gè)參數(shù)均為-2.0480,有時(shí)會出現(xiàn)局部極值,此時(shí)一個(gè)參數(shù)為-2.0480,一個(gè)為2.0480。算法中變異概率pm=0.05,交叉概率pc=0.8。如果不采用最優(yōu)模式保留,結(jié)果會更豐富些,也就是算法最后不一定收斂于極值點(diǎn),當(dāng)然局部收斂現(xiàn)象也會有所減少,但最終尋得的解不一定是本次執(zhí)行中曾找到過的最好解。
標(biāo)簽: 遺傳算法
上傳時(shí)間: 2015-06-04
上傳用戶:芃溱溱123
此文件是用子空間迭代法求解頻率和振型,只是一種算例
標(biāo)簽: MATLAB
上傳時(shí)間: 2015-11-21
上傳用戶:chinaebs
Adams Matlab 控制系統(tǒng)聯(lián)合仿真;Adams Matlab 控制系統(tǒng)聯(lián)合仿真;Adams Matlab 控制系統(tǒng)聯(lián)合仿真
標(biāo)簽: Adams Matlab 控制系統(tǒng)聯(lián)合仿真
上傳時(shí)間: 2016-04-11
上傳用戶:chhflybug
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1