求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標(biāo)簽: gt myfunction function numel
上傳時(shí)間: 2014-01-15
上傳用戶:hongmo
求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標(biāo)簽: gt myfunction function numel
上傳時(shí)間: 2013-12-26
上傳用戶:dreamboy36
求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標(biāo)簽: gt myfunction function numel
上傳時(shí)間: 2016-06-28
上傳用戶:change0329
求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標(biāo)簽: gt myfunction function numel
上傳時(shí)間: 2014-09-03
上傳用戶:jjj0202
Intel XScale 系統(tǒng)晶片核心介紹
標(biāo)簽: XScale Intel 系統(tǒng) 晶片
上傳時(shí)間: 2013-12-11
上傳用戶:ynzfm
基於DE2系統(tǒng)的LCM verilog code,在LCM右下方顯示數(shù)字,每按一次按鍵數(shù)字會(huì)加1,顏色也會(huì)改變
標(biāo)簽: LCM verilog code DE2
上傳時(shí)間: 2014-01-14
上傳用戶:banyou
C和C++嵌入式系統(tǒng)編程,一本很嵌入式編程很不錯(cuò)的書.
上傳時(shí)間: 2014-01-09
上傳用戶:lps11188
用JSP編寫的線上問卷調(diào)查系統(tǒng),提供JSP及JavaBean源始碼
上傳時(shí)間: 2016-07-31
上傳用戶:123456wh
K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個(gè)數(shù)據(jù)對象劃分為 k個(gè)聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個(gè)“中心對象”(引力中心)來進(jìn)行計(jì)算的。 k-means 算法的工作過程說明如下:首先從n個(gè)數(shù)據(jù)對象任意選擇 k 個(gè)對象作為初始聚類中心;而對于所剩下其它對象,則根據(jù)它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計(jì)算每個(gè)所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復(fù)這一過程直到標(biāo)準(zhǔn)測度函數(shù)開始收斂為止。一般都采用均方差作為標(biāo)準(zhǔn)測度函數(shù). k個(gè)聚類具有以下特點(diǎn):各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開
標(biāo)簽: 聚類 K-MEANS k-means 對象
上傳時(shí)間: 2016-07-31
上傳用戶:youlongjian0
K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個(gè)數(shù)據(jù)對象劃分為 k個(gè)聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個(gè)“中心對象”(引力中心)來進(jìn)行計(jì)算的。 k-means 算法的工作過程說明如下:首先從n個(gè)數(shù)據(jù)對象任意選擇 k 個(gè)對象作為初始聚類中心;而對于所剩下其它對象,則根據(jù)它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計(jì)算每個(gè)所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復(fù)這一過程直到標(biāo)準(zhǔn)測度函數(shù)開始收斂為止。一般都采用均方差作為標(biāo)準(zhǔn)測度函數(shù). k個(gè)聚類具有以下特點(diǎn):各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開
標(biāo)簽: 聚類 K-MEANS k-means 對象
上傳時(shí)間: 2013-12-19
上傳用戶:chenlong
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1