Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個“中心對象”(引力中心)來進行計算的。 k-means 算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對于所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標準測度函數開始收斂為止。一般都采用均方差作為標準測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開
上傳時間: 2016-07-31
上傳用戶:youlongjian0
K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個“中心對象”(引力中心)來進行計算的。 k-means 算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對于所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標準測度函數開始收斂為止。一般都采用均方差作為標準測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開
上傳時間: 2013-12-19
上傳用戶:chenlong
k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個“中心對象”(引力中心)來進行計算的。 Matlab 源代碼,以蘭花數據集作為測試對象。
上傳時間: 2014-01-21
上傳用戶:2525775
ADT HuffmanTree{ 數據對象:D={ai| ai∈CharSet,i=1,2,……,n, n≥0} 數據關系:R={< ai-1, ai > ai-1, ai∈D, ai-1基本操作P: HuffmanTree() 構造函數 ~ HuffmanTree() 析構函數 Initialization(int WeightNum) 操作結果:構造哈夫曼樹。 Encoder() 初始條件:哈夫曼樹已存在或者哈夫曼樹已存到文件中。 操作結果:對字符串進行編碼 Decoder() 初始條件:哈夫曼樹已存在且已編碼。 操作結果:對二進制串進行譯碼 Print() 初始條件:編碼文件已存在。 操作結果:把已保存好的編碼文件顯示在屏幕 TreePrinting() 初始條件:哈夫曼樹已存在。 操作結果:將已在內存中的哈夫曼樹以直觀的方式顯示在終端上
標簽: ai HuffmanTree CharSet ADT
上傳時間: 2013-12-25
上傳用戶:changeboy
基本思想: 設所排序序列的記錄個數為n。i取1,2,…,n-1,從所有n-i+1個記錄(R,R[i+1],…,R[n]中找出排序碼最小的記錄,與第i個記錄交換。執行n-1趟 后就完成了記錄序列的排序。
上傳時間: 2013-12-19
上傳用戶:kytqcool
給定n個節點xi(i=0,1,...,n-1)上的函數值yi=f[xi],用拉格朗日插值公式計算指定插值點t處的函數近似值z=f[t]
上傳時間: 2013-12-21
上傳用戶:小眼睛LSL
給定n個節點xi[i=0,1,...,n-1]上的函數值yi=f[xi],用拋物插值公式計算指定插值點t處的函數近似值z=f[t]
上傳時間: 2017-03-10
上傳用戶:chfanjiang
給定n個節點xi[i=0,1,...,n-1]上的函數值yi=f[xi],用連分式插值法計算指定插值點t處的函數近似值z=f[t]
上傳時間: 2014-01-10
上傳用戶:zycidjl
給定n個節點xi[i=0,1,...,n-1]上的函數值yi=[xi]以及一屆倒數值yi =f [xi],用埃爾米特插值公式計算指定插值點t處的函數近似值z=f[t]
上傳時間: 2013-12-26
上傳用戶:CHINA526