亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

醫(yī)用電氣設(shè)備 第1部分:安全通用要求

  • 很多不等式在展開以后形成如下的對稱形式 sigma(s1^a1*s2^a2*...*sn^an)>=sigma(s1^b1*s2^b2*...*sn^bn) (當然 作為齊次不等式

    很多不等式在展開以后形成如下的對稱形式 sigma(s1^a1*s2^a2*...*sn^an)>=sigma(s1^b1*s2^b2*...*sn^bn) (當然 作為齊次不等式 a1+a2+....an=b1+b2+...bn 變量s1,s2,...sn非負) 其中sigma表示對稱和(也就是說 一共n!項) 例如 sigma(x^3)=x^3y^0z^0+x^3z^0y^0+y^3x^0z^0+y^3z^0x^0+z^3x^0y^0+z^3y^0x^0=2*(x^3+y^3+z^3) sigma(x^3y^2z^1)=x^3y^2z^1+x^3z^2y^1+y^3x^2z^1+y^3z^2x^1+z^3x^2y^1+z^3y^2x^1 (三元sigma 一共是6項) 有時候 我們把sigma(s1^a1*s2^a2*...*sn*an)寫作 [a1,a2,...an] 例如 著名的均值不等式可以寫成 [n,0,0...0]>=[1,1,1...1] 又比如x^2+y^2+z^2>=xy+yz+zx 寫成[2,0]>=[1,1] 本程序能比較兩個完全對稱不等式的大小關系。

    標簽: sigma sn an gt

    上傳時間: 2013-12-15

    上傳用戶:sclyutian

  • 著名問題:埃及分數 給出一個數n

    著名問題:埃及分數 給出一個數n,要求用自然數倒數和來表示。 1/1=1/2+1/3+1/5

    標簽: 分數

    上傳時間: 2014-01-03

    上傳用戶:cx111111

  • 語法分析 C2.1 實驗目的 編制一個遞歸下降分析程序,實現對詞法分析程序所提供的單詞序列的語法檢查和結構分析. C2.2 實驗要求 利用C語言編制遞歸下降分析程序,并對簡單語言進行語法分析.

    語法分析 C2.1 實驗目的 編制一個遞歸下降分析程序,實現對詞法分析程序所提供的單詞序列的語法檢查和結構分析. C2.2 實驗要求 利用C語言編制遞歸下降分析程序,并對簡單語言進行語法分析. C2.2.1待分析的簡單語言的語法 用擴充的BNF表示如下: (1)<程序>::=begin<語句串>end (2)<語句串>::=<語句>{ <語句>} (3)<語句>::=<賦值語句> (4)<賦值語句>::=ID:=<表達式> (5)<表達式>::=<項>{+<項> | —項>} (6)<項>::=<因子>{*<因子> | /<因子>} (7)<因子>::=ID | NUM | (<表達式>) C2。2。2實驗要求說明 輸入單詞串,以“#”結束,如果是文法正確的句子,則輸出成功信息,打印“success”,否則輸出“error”.

    標簽: 程序 2.1 2.2

    上傳時間: 2014-09-05

    上傳用戶:caiiicc

  • C語言算法速查手冊 書本附件

    第1章 緒論 1 1.1 程序設計語言概述 1 1.1.1 機器語言 1 1.1.2 匯編語言 2 1.1.3 高級語言 2 1.1.4 C語言 3 1.2 C語言的優點和缺點 4 1.2.1 C語言的優點 4 1.2.2 C語言的缺點 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的復雜度 8 1.3.3 算法的準確性 10 1.3.4 算法的穩定性 14 第2章 復數運算 18 2.1 復數的四則運算 18 2.1.1 [算法1] 復數乘法 18 2.1.2 [算法2] 復數除法 20 2.1.3 【實例5】 復數的四則運算 22 2.2 復數的常用函數運算 23 2.2.1 [算法3] 復數的乘冪 23 2.2.2 [算法4] 復數的n次方根 25 2.2.3 [算法5] 復數指數 27 2.2.4 [算法6] 復數對數 29 2.2.5 [算法7] 復數正弦 30 2.2.6 [算法8] 復數余弦 32 2.2.7 【實例6】 復數的函數運算 34 第3章 多項式計算 37 3.1 多項式的表示方法 37 3.1.1 系數表示法 37 3.1.2 點表示法 38 3.1.3 [算法9] 系數表示轉化為點表示 38 3.1.4 [算法10] 點表示轉化為系數表示 42 3.1.5 【實例7】 系數表示法與點表示法的轉化 46 3.2 多項式運算 47 3.2.1 [算法11] 復系數多項式相乘 47 3.2.2 [算法12] 實系數多項式相乘 50 3.2.3 [算法13] 復系數多項式相除 52 3.2.4 [算法14] 實系數多項式相除 54 3.2.5 【實例8】 復系數多項式的乘除法 56 3.2.6 【實例9】 實系數多項式的乘除法 57 3.3 多項式的求值 59 3.3.1 [算法15] 一元多項式求值 59 3.3.2 [算法16] 一元多項式多組求值 60 3.3.3 [算法17] 二元多項式求值 63 3.3.4 【實例10】 一元多項式求值 65 3.3.5 【實例11】 二元多項式求值 66 第4章 矩陣計算 68 4.1 矩陣相乘 68 4.1.1 [算法18] 實矩陣相乘 68 4.1.2 [算法19] 復矩陣相乘 70 4.1.3 【實例12】 實矩陣與復矩陣的乘法 72 4.2 矩陣的秩與行列式值 73 4.2.1 [算法20] 求矩陣的秩 73 4.2.2 [算法21] 求一般矩陣的行列式值 76 4.2.3 [算法22] 求對稱正定矩陣的行列式值 80 4.2.4 【實例13】 求矩陣的秩和行列式值 82 4.3 矩陣求逆 84 4.3.1 [算法23] 求一般復矩陣的逆 84 4.3.2 [算法24] 求對稱正定矩陣的逆 90 4.3.3 [算法25] 求托伯利茲矩陣逆的Trench方法 92 4.3.4 【實例14】 驗證矩陣求逆算法 97 4.3.5 【實例15】 驗證T矩陣求逆算法 99 4.4 矩陣分解與相似變換 102 4.4.1 [算法26] 實對稱矩陣的LDL分解 102 4.4.2 [算法27] 對稱正定實矩陣的Cholesky分解 104 4.4.3 [算法28] 一般實矩陣的全選主元LU分解 107 4.4.4 [算法29] 一般實矩陣的QR分解 112 4.4.5 [算法30] 對稱實矩陣相似變換為對稱三對角陣 116 4.4.6 [算法31] 一般實矩陣相似變換為上Hessen-Burg矩陣 121 4.4.7 【實例16】 對一般實矩陣進行QR分解 126 4.4.8 【實例17】 對稱矩陣的相似變換 127 4.4.9 【實例18】 一般實矩陣相似變換 129 4.5 矩陣特征值的計算 130 4.5.1 [算法32] 求上Hessen-Burg矩陣全部特征值的QR方法 130 4.5.2 [算法33] 求對稱三對角陣的全部特征值 137 4.5.3 [算法34] 求對稱矩陣特征值的雅可比法 143 4.5.4 [算法35] 求對稱矩陣特征值的雅可比過關法 147 4.5.5 【實例19】 求上Hessen-Burg矩陣特征值 151 4.5.6 【實例20】 分別用兩種雅克比法求對稱矩陣特征值 152 第5章 線性代數方程組的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解復系數方程組的全選主元高斯消去法 155 5.1.2 [算法37] 求解實系數方程組的全選主元高斯消去法 160 5.1.3 [算法38] 求解復系數方程組的全選主元高斯-約當消去法 163 5.1.4 [算法39] 求解實系數方程組的全選主元高斯-約當消去法 168 5.1.5 [算法40] 求解大型稀疏系數矩陣方程組的高斯-約當消去法 171 5.1.6 [算法41] 求解三對角線方程組的追趕法 174 5.1.7 [算法42] 求解帶型方程組的方法 176 5.1.8 【實例21】 解線性實系數方程組 179 5.1.9 【實例22】 解線性復系數方程組 180 5.1.10 【實例23】 解三對角線方程組 182 5.2 矩陣分解法 184 5.2.1 [算法43] 求解對稱方程組的LDL分解法 184 5.2.2 [算法44] 求解對稱正定方程組的Cholesky分解法 186 5.2.3 [算法45] 求解線性最小二乘問題的QR分解法 188 5.2.4 【實例24】 求解對稱正定方程組 191 5.2.5 【實例25】 求解線性最小二乘問題 192 5.3 迭代方法 193 5.3.1 [算法46] 病態方程組的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德爾迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解對稱正定方程組的共軛梯度方法 205 5.3.6 [算法51] 求解托伯利茲方程組的列文遜方法 209 5.3.7 【實例26】 解病態方程組 214 5.3.8 【實例27】 用迭代法解方程組 215 5.3.9 【實例28】 求解托伯利茲方程組 217 第6章 非線性方程與方程組的求解 219 6.1 非線性方程求根的基本過程 219 6.1.1 確定非線性方程實根的初始近似值或根的所在區間 219 6.1.2 求非線性方程根的精確解 221 6.2 求非線性方程一個實根的方法 221 6.2.1 [算法52] 對分法 221 6.2.2 [算法53] 牛頓法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【實例29】 用對分法求非線性方程組的實根 232 6.2.6 【實例30】 用牛頓法求非線性方程組的實根 233 6.2.7 【實例31】 用插值法求非線性方程組的實根 235 6.2.8 【實例32】 用埃特金迭代法求非線性方程組的實根 237 6.3 求實系數多項式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【實例33】 用QR方法求解多項式的全部根 240 6.4 求非線性方程組一組實根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 擬牛頓法 244 6.4.3 【實例34】 用梯度法計算非線性方程組的一組實根 250 6.4.4 【實例35】 用擬牛頓法計算非線性方程組的一組實根 252 第7章 代數插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 線性插值 255 7.1.2 [算法60] 二次拋物線插值 256 7.1.3 [算法61] 全區間插值 259 7.1.4 【實例36】 拉格朗日插值 262 7.2 埃爾米特插值 263 7.2.1 [算法62] 埃爾米特不等距插值 263 7.2.2 [算法63] 埃爾米特等距插值 267 7.2.3 【實例37】 埃爾米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【實例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【實例39】 光滑插值 286 7.5 三次樣條插值 287 7.5.1 [算法68] 第一類邊界條件的三次樣條函數插值 287 7.5.2 [算法69] 第二類邊界條件的三次樣條函數插值 292 7.5.3 [算法70] 第三類邊界條件的三次樣條函數插值 296 7.5.4 【實例40】 樣條插值法 301 7.6 連分式插值 303 7.6.1 [算法71] 連分式插值 304 7.6.2 【實例41】 驗證連分式插值的函數 308 第8章 數值積分法 309 8.1 變步長求積法 310 8.1.1 [算法72] 變步長梯形求積法 310 8.1.2 [算法73] 自適應梯形求積法 313 8.1.3 [算法74] 變步長辛卜生求積法 316 8.1.4 [算法75] 變步長辛卜生二重積分方法 318 8.1.5 [算法76] 龍貝格積分 322 8.1.6 【實例42】 變步長積分法進行一重積分 325 8.1.7 【實例43】 變步長辛卜生積分法進行二重積分 326 8.2 高斯求積法 328 8.2.1 [算法77] 勒讓德-高斯求積法 328 8.2.2 [算法78] 切比雪夫求積法 331 8.2.3 [算法79] 拉蓋爾-高斯求積法 334 8.2.4 [算法80] 埃爾米特-高斯求積法 336 8.2.5 [算法81] 自適應高斯求積方法 337 8.2.6 【實例44】 有限區間高斯求積法 342 8.2.7 【實例45】 半無限區間內高斯求積法 343 8.2.8 【實例46】 無限區間內高斯求積法 345 8.3 連分式法 346 8.3.1 [算法82] 計算一重積分的連分式方法 346 8.3.2 [算法83] 計算二重積分的連分式方法 350 8.3.3 【實例47】 連分式法進行一重積分 354 8.3.4 【實例48】 連分式法進行二重積分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法進行一重積分 356 8.4.2 [算法85] 蒙特卡洛法進行二重積分 358 8.4.3 【實例49】 一重積分的蒙特卡洛法 360 8.4.4 【實例50】 二重積分的蒙特卡洛法 361 第9章 常微分方程(組)初值問題的求解 363 9.1 歐拉方法 364 9.1.1 [算法86] 定步長歐拉方法 364 9.1.2 [算法87] 變步長歐拉方法 366 9.1.3 [算法88] 改進的歐拉方法 370 9.1.4 【實例51】 歐拉方法求常微分方程數值解 372 9.2 龍格-庫塔方法 376 9.2.1 [算法89] 定步長龍格-庫塔方法 376 9.2.2 [算法90] 變步長龍格-庫塔方法 379 9.2.3 [算法91] 變步長基爾方法 383 9.2.4 【實例52】 龍格-庫塔方法求常微分方程的初值問題 386 9.3 線性多步法 390 9.3.1 [算法92] 阿當姆斯預報校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全區間積分的雙邊法 399 9.3.4 【實例53】 線性多步法求常微分方程組初值問題 401 第10章 擬合與逼近 405 10.1 一元多項式擬合 405 10.1.1 [算法95] 最小二乘擬合 405 10.1.2 [算法96] 最佳一致逼近的里米茲方法 412 10.1.3 【實例54】 一元多項式擬合 417 10.2 矩形區域曲面擬合 419 10.2.1 [算法97] 矩形區域最小二乘曲面擬合 419 10.2.2 【實例55】 二元多項式擬合 428 第11章 特殊函數 430 11.1 連分式級數和指數積分 430 11.1.1 [算法98] 連分式級數求值 430 11.1.2 [算法99] 指數積分 433 11.1.3 【實例56】 連分式級數求值 436 11.1.4 【實例57】 指數積分求值 438 11.2 伽馬函數 439 11.2.1 [算法100] 伽馬函數 439 11.2.2 [算法101] 貝塔函數 441 11.2.3 [算法102] 階乘 442 11.2.4 【實例58】 伽馬函數和貝塔函數求值 443 11.2.5 【實例59】 階乘求值 444 11.3 不完全伽馬函數 445 11.3.1 [算法103] 不完全伽馬函數 445 11.3.2 [算法104] 誤差函數 448 11.3.3 [算法105] 卡方分布函數 450 11.3.4 【實例60】 不完全伽馬函數求值 451 11.3.5 【實例61】 誤差函數求值 452 11.3.6 【實例62】 卡方分布函數求值 453 11.4 不完全貝塔函數 454 11.4.1 [算法106] 不完全貝塔函數 454 11.4.2 [算法107] 學生分布函數 457 11.4.3 [算法108] 累積二項式分布函數 458 11.4.4 【實例63】 不完全貝塔函數求值 459 11.5 貝塞爾函數 461 11.5.1 [算法109] 第一類整數階貝塞爾函數 461 11.5.2 [算法110] 第二類整數階貝塞爾函數 466 11.5.3 [算法111] 變型第一類整數階貝塞爾函數 469 11.5.4 [算法112] 變型第二類整數階貝塞爾函數 473 11.5.5 【實例64】 貝塞爾函數求值 476 11.5.6 【實例65】 變型貝塞爾函數求值 477 11.6 Carlson橢圓積分 479 11.6.1 [算法113] 第一類橢圓積分 479 11.6.2 [算法114] 第一類橢圓積分的退化形式 481 11.6.3 [算法115] 第二類橢圓積分 483 11.6.4 [算法116] 第三類橢圓積分 486 11.6.5 【實例66】 第一類勒讓德橢圓函數積分求值 490 11.6.6 【實例67】 第二類勒讓德橢圓函數積分求值 492 第12章 極值問題 494 12.1 一維極值求解方法 494 12.1.1 [算法117] 確定極小值點所在的區間 494 12.1.2 [算法118] 一維黃金分割搜索 499 12.1.3 [算法119] 一維Brent方法 502 12.1.4 [算法120] 使用一階導數的Brent方法 506 12.1.5 【實例68】 使用黃金分割搜索法求極值 511 12.1.6 【實例69】 使用Brent法求極值 513 12.1.7 【實例70】 使用帶導數的Brent法求極值 515 12.2 多元函數求極值 517 12.2.1 [算法121] 不需要導數的一維搜索 517 12.2.2 [算法122] 需要導數的一維搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共軛梯度法 525 12.2.5 [算法125] 準牛頓法 531 12.2.6 【實例71】 驗證不使用導數的一維搜索 536 12.2.7 【實例72】 用Powell算法求極值 537 12.2.8 【實例73】 用共軛梯度法求極值 539 12.2.9 【實例74】 用準牛頓法求極值 540 12.3 單純形法 542 12.3.1 [算法126] 求無約束條件下n維極值的單純形法 542 12.3.2 [算法127] 求有約束條件下n維極值的單純形法 548 12.3.3 [算法128] 解線性規劃問題的單純形法 556 12.3.4 【實例75】 用單純形法求無約束條件下N維的極值 568 12.3.5 【實例76】 用單純形法求有約束條件下N維的極值 569 12.3.6 【實例77】 求解線性規劃問題 571 第13章 隨機數產生與統計描述 574 13.1 均勻分布隨機序列 574 13.1.1 [算法129] 產生0到1之間均勻分布的一個隨機數 574 13.1.2 [算法130] 產生0到1之間均勻分布的隨機數序列 576 13.1.3 [算法131] 產生任意區間內均勻分布的一個隨機整數 577 13.1.4 [算法132] 產生任意區間內均勻分布的隨機整數序列 578 13.1.5 【實例78】 產生0到1之間均勻分布的隨機數序列 580 13.1.6 【實例79】 產生任意區間內均勻分布的隨機整數序列 581 13.2 正態分布隨機序列 582 13.2.1 [算法133] 產生任意均值與方差的正態分布的一個隨機數 582 13.2.2 [算法134] 產生任意均值與方差的正態分布的隨機數序列 585 13.2.3 【實例80】 產生任意均值與方差的正態分布的一個隨機數 587 13.2.4 【實例81】 產生任意均值與方差的正態分布的隨機數序列 588 13.3 統計描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同時的t分布檢驗 591 13.3.3 [算法137] 方差不同時的t分布檢驗 594 13.3.4 [算法138] 方差的F檢驗 596 13.3.5 [算法139] 卡方檢驗 599 13.3.6 【實例82】 計算隨機樣本的矩 601 13.3.7 【實例83】 t分布檢驗 602 13.3.8 【實例84】 F分布檢驗 605 13.3.9 【實例85】 檢驗卡方檢驗的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序數組的二分查找 609 14.1.2 [算法141] 無序數組同時查找最大和最小的元素 611 14.1.3 [算法142] 無序數組查找第M小的元素 613 14.1.4 【實例86】 基本查找 615 14.2 結構體和磁盤文件的查找 617 14.2.1 [算法143] 無序結構體數組的順序查找 617 14.2.2 [算法144] 磁盤文件中記錄的順序查找 618 14.2.3 【實例87】 結構體數組和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函數 622 14.3.2 [算法146] 哈希函數 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中刪除元素 631 14.3.6 【實例88】 構造哈希表并進行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希爾排序 637 15.1.3 【實例89】 插入排序 639 15.2 交換排序 641 15.2.1 [算法152] 氣泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【實例90】 交換排序 644 15.3 選擇排序 646 15.3.1 [算法154] 直接選擇排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【實例91】 選擇排序 650 15.4 線性時間排序 651 15.4.1 [算法156] 計數排序 651 15.4.2 [算法157] 基數排序 653 15.4.3 【實例92】 線性時間排序 656 15.5 歸并排序 657 15.5.1 [算法158] 二路歸并排序 658 15.5.2 【實例93】 二路歸并排序 660 第16章 數學變換與濾波 662 16.1 快速傅里葉變換 662 16.1.1 [算法159] 復數據快速傅里葉變換 662 16.1.2 [算法160] 復數據快速傅里葉逆變換 666 16.1.3 [算法161] 實數據快速傅里葉變換 669 16.1.4 【實例94】 驗證傅里葉變換的函數 671 16.2 其他常用變換 674 16.2.1 [算法162] 快速沃爾什變換 674 16.2.2 [算法163] 快速哈達瑪變換 678 16.2.3 [算法164] 快速余弦變換 682 16.2.4 【實例95】 驗證沃爾什變換和哈達瑪的函數 684 16.2.5 【實例96】 驗證離散余弦變換的函數 687 16.3 平滑和濾波 688 16.3.1 [算法165] 五點三次平滑 689 16.3.2 [算法166] α-β-γ濾波 690 16.3.3 【實例97】 驗證五點三次平滑 692 16.3.4 【實例98】 驗證α-β-γ濾波算法 693  

    標簽: C 算法 附件 源代碼

    上傳時間: 2015-06-29

    上傳用戶:cbsdukaf

  • 約瑟夫環的小實驗-數據結構

    每30個乘客同乘一艘船,因為嚴重超載,加上風高浪大,危險萬分,因此船長告訴乘客,只有將全船一半乘客投入海中,其余人才能幸免于難。無奈,大家只得同意這種辦法,并議定30個人圍成一圈,由第1個人數起,依次報數,數到第9人,便把他投入大海中,然后再從他的下一個人數起,數到第9人,再將他扔到大海中,如此循環地進行,直到剩下15個乘客為止。問哪些位置是將被扔下大海的位置 輸入輸出格式: 輸入:總人數  剩余人數 間隔人數 輸出:用英文逗號分隔的從最小關鍵字輸出的余下人的關鍵字序列這里每個人一個名字為每個人的關鍵字(這里用數字1-n作為關鍵字),初始圍成圓圈的時候站的位置就是關鍵字值。

    標簽: c語言實驗數據結構

    上傳時間: 2016-03-18

    上傳用戶:hf_fxy

  • 溫度采集系統設計

    利用溫度傳感器AD590采集溫度信號,并調理放大采集到的電壓信號,用TLC549進行電壓轉換,實現溫度采集,并將采集溫度顯示出來。本設計包括硬件和軟件兩個部分,系統的硬件部分大致可分為六部分:DSI8B20,電源電路,顯示電路,單片機最小系統,溫度測試電路,串口通信電路:軟件部分可分為兩大部分:串口通信部分,VB數據處理與顯示部分DSI8B20。

    標簽: 溫度采集 系統設計

    上傳時間: 2016-05-10

    上傳用戶:RichardHu

  • 大學 c語言程序設計課程設計

    C語言課程設計上機實習內容 一、從下面題目中任選一題: A.簡單的學生成績管理程序設計 B.考卷成績分析軟件程序設計 C.簡單醫療費用報銷管理軟件程序設計 除此之外,學生也可自行選擇課題進行設計,如自動柜員機界面程序、學生信息管理(包括生日祝賀)、計件工資管理等(但課題必須經指導教師審題合格后方可使用)。   二、課程設計說明書的編寫規范 1、程序分析和設計 2、流程圖 3、源程序清單 4、調試過程:測試數據及結果,出現了哪些問題,如何修改的 5、程序有待改進的地方 6、本次實習的收獲和建議   三、提交的資料 1、軟件 軟件需提供源程序,并能正常運行。 注:對于程序中未能實現的部分需要加以說明。 對于程序中所參考的部分代碼需要加以聲明,并說明出處。 2、文檔 課程設計文檔要求打印稿,同時提交電子文檔。文檔中必須包含課程設計小結,即收獲和體會。 文檔要注意格式,標題一律用小四號宋體加黑,正文用五號宋體,行間距固定值18,首行縮進2字符;如果有圖表,每個圖表必須順序編號并有標題,如“圖1  計算平均分的N-S圖”、“表1  地信081班成績一覽表”,一般圖名在圖的正下方、表名在表的正上方。   四、成績評定 通過學生的動手能力、獨立分析解決問題的能力、創新能力、課程設計報告、答辯水平以及學習態度綜合考核。 考核標準包括: 1、完成設計題目所要求的內容,程序書寫規范、有一定的實用性,占45%; 2、平時表現(考勤+上機抽查)占10%; 3、課程設計報告占30%; 4、答辯及演示占15%。 五、實習計劃   以選題一為例   實習計劃 時間 內容 第1天 一、布置實習內容和要求 1、 實習內容介紹、實習安排、實習紀律、注意事項 2、 學生選題 第2天 二、上機實習 1、根據所選題的要求,進行總體設計,確定程序總體框架 2、選擇和準備原始數據,制作.txt文本文件 第3天 3、文件的讀寫函數的使用,實現文本文件的讀取和寫入功能。 使用函數fread(); fwrite();  fprint(); fscan();完成對原始數據的文本輸入和輸出。 第4、5天   4、主要算法的選擇和功能實現(以學生成績管理系統為例):    ① 計算每個學生三門功課的平均分,并按平均分排列名次,若平均分相同則名次并列;結果寫入文件。 ② 統計全班每門課程的平均分,并計算各分數段(60以下,60~69,70~79,80~89,90以上)的學生人數;結果寫入文件。     第6、7天 5、結果格式輸出及程序整合(以學生成績管理系統為例) ① 按格式在屏幕上打印每名學生成績條; ② 在屏幕上打印出所有不及格學生的下列信息:學號,不及格的課程名,該不及格課程成績; (選做)在屏幕打印優等生名單(學號,三門課程成績,平均成績,名次),優等生必須滿足下列條件:1)平均成績大于90分;或平均分大于85分且至少有一門功課為100分;或者平均分大于85分且至少兩門課程成績為95分以上;2) 名次在前三名; 3) 每門功課及格以上; 第8天 三、測試完整程序 要求功能完整,結果符合設計要求,并進行程序驗收。 第9、10天 四、編寫報告 完成實習報告的編寫,并打印上交報告。  

    標簽: 大學 c語言 程序設計

    上傳時間: 2016-06-27

    上傳用戶:lh643631046

  • 紅外遙控RGB

    #include "STC90.h" #include < intrins.h > #define uchar unsigned char #define uint unsigned int #define led_port P1 sbit IR_RE = P3^2; sbit led_r = P1^3; sbit led_g = P1^4; sbit led_b = P1^5; sbit led_wd = P1^7; sbit K1 =P3^0 ; //增加鍵 sbit K2 =P3^1 ; //減少鍵 sbit BEEP =P3^7 ; //蜂鳴器 uchar temp,temp1; bit k=0; //紅外解碼判斷標志位,為0則為有效信號,為1則為無效 bit Flag2; uchar date[4]={0,0,0,0}; //date數組為存放地址原碼,反碼,數據原碼,反碼 uint lade_1,lade_2,lade_3,lade_4; uint num; uchar date_ram,ee_temp,ee_temp1; uchar WDT_NUM=0; uchar const dofly[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 顯示段碼值01234567 uchar code seg[]={7,6,5,4,3,2,1,0};//分別對應相應的數碼管點亮,即位碼 unsigned long disp_date; void fade(); void fade1(); /*************************** 看門狗子程序*************************/ void watchdog_timer() { if(WDT_NUM==5) { WDT_NUM=0; led_wd=!led_wd; } WDT_NUM++; WDT_CONTR=0x3f; } /******************************************************************/ void delay(unsigned int cnt) { while(--cnt); } /*--------------------------延時1ms程子程序-----------------------*/ void delay_1ms(uint z) { uint x,y; for(x=z;x>0;x--) for(y=126;y>0;y--); } /*--------------------------延時1ms程子程序-----------------------*/ delay1000() { uchar i,j; i=5; do{j=95; do{j--;} while(j); i--; } while(i); } /*---------------------------延時882us子程序-----------------------*/ delay882() { uchar i,j; i=6; do{j=71; do{j--;} while(j); i--; }while(i); } /*--------------------------延時2400us程子程序-----------------------*/ delay2400() { uchar i,j; i=5; do{j=237; do{j--;} while(j); i--; }while(i); } /**********************************************************************/ /* void display() { uchar i; for(i=0;i<8;i++) { P0=dofly[disp_date%10];//取顯示數據,段碼 P2=seg[i]; //取位碼 delay_1ms(1); disp_date/=10; } } */ /*********************************************************************/ uchar EEPROM_read(uint addr)//EEPROM字節讀 { ISP_CONTR=0x83; //系統時鐘<12M時,對ISP_CONTR寄存器設置的值,本電路為11.0592M ISP_CMD=1; //字節讀 ISP_ADDRH=(addr&0xff00)>>8; ISP_ADDRL=addr&0x00ff; ISP_TRIG=0x46; ISP_TRIG=0xb9; _nop_(); _nop_(); return ISP_DATA; } //-------------------------------------------------------------------- void EEPROM_write(uint addr,uchar dat)//EEPROM字節寫 { ISP_CONTR=0x83; //系統時鐘<12M時,對ISP_CONTR寄存器設置的值,本電路為11.0592M ISP_CMD=2; //字節編程 ISP_ADDRH=(addr&0xff00)>>8; ISP_ADDRL=addr&0x00ff; ISP_DATA=dat; ISP_TRIG=0x46; ISP_TRIG=0xb9; _nop_(); _nop_(); } //-------------------------------------------------------------------- void EEPROM_ERASE(uint addr)//EEPROM扇區擦除 { ISP_CONTR=0x83; //系統時鐘<12M時,對ISP_CONTR寄存器設置的值,本電路為11.0592M ISP_CMD=3; //扇區擦除 ISP_ADDRH=(addr&0xff00)>>8; ISP_ADDRL=addr&0x00ff; ISP_TRIG=0x46; ISP_TRIG=0xb9; _nop_(); _nop_(); } //************************************************************** /*----------------------------------------------------------*/ /*-----------------------紅外解碼程序(核心)-----------------*/ /*----------------------------------------------------------*/ void IR_decode() { uchar i,j; while(IR_RE==0); delay2400(); if(IR_RE==1) //延時2.4ms后如果是高電平則是新碼 { delay1000(); delay1000(); for(i=0;i<4;i++) { for(j=0;j<8;j++) { while(IR_RE==0); //等待地址碼第1位高電平到來 delay882(); //延時882us判斷此時引腳電平 ///CY=IR_RE; if(IR_RE==0) { date[i]>>=1; date[i]=date[i]|0x00; } else if(IR_RE==1) { delay1000(); date[i]>>=1; date[i]=date[i]|0x80; } } //1位數據接收結束 } //32位二進制碼接收結束 } } /* void LED_PWM() { lade_2=num; //384 lade_4=num; //384 while(lade_2!=0&Flag2==1) { for(lade_3=512;lade_3>lade_4;lade_3--) //512 { led_port=0x00; delay(1); } lade_3=512; //512 lade_4--; for(lade_1=0;lade_1<lade_2;lade_1++) { led_port=0x38; //c7 delay(1); } lade_1=0; lade_2--; if(temp!=0x0c&Flag2==1) { lade_2=0; } lade_2=num; //384 lade_4=num; //384 } } */ void calc() { EEPROM_read(0x2000); ee_temp1=ISP_DATA; ee_temp=ee_temp1&0x0f; //************************************* 1 /* if(date[3]==0xff&Flag2==1) { if(num>=20) { num=num-80; } //else num=1; LED_PWM(); } if(date[3]==0xfe&Flag2==1) { if(num<=500) { num=num+80; } // else num=511; LED_PWM(); } if(ee_temp1==0xfd) { led_port=0x00; watchdog_timer(); } if(ee_temp1==0xfc) { led_port=0x00; led_r=1; led_g=1; led_b=1; watchdog_timer(); } */ //********************************************** 2 if(ee_temp1==0xfb) { led_port=0x00; led_r=1; watchdog_timer(); } if(ee_temp1==0xfa) { led_port=0x00; led_g=1; watchdog_timer(); } if(ee_temp1==0xf9) { led_port=0x00; led_b=1; watchdog_timer(); } if(ee_temp1==0xf8) { led_port=0x00; led_r=1; led_g=1; led_b=1; watchdog_timer(); } //************************************** 3 if(ee_temp1==0xf7) { uint fade_1,fade_2,fade_3,fade_4; fade_2=448; //384 fade_4=448; //384 while(fade_2!=0&ee_temp==0x07) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x10; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x07) { fade_2=0; } watchdog_timer(); fade_2=448; //384 fade_4=448; //384 } } if(ee_temp1==0xf6) { uint fade_1,fade_2,fade_3,fade_4; fade_2=448; //384 fade_4=448; //384 while(fade_2!=0&ee_temp==0x06) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x20; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x06) { fade_2=0; } watchdog_timer(); fade_2=448; //384 fade_4=448; //384 } } if(ee_temp1==0xf5) { uint fade_1,fade_2,fade_3,fade_4; fade_2=448; //384 fade_4=448; //384 while(fade_2!=0&ee_temp==0x05) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x08; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x05) { fade_2=0; } watchdog_timer(); fade_2=448; //384 fade_4=448; //384 } } if(ee_temp1==0xf4) { while(ee_temp==4) { led_port=0x00; led_r=1; delay_1ms(200); led_port=0x00; led_r=1; led_g=1; delay_1ms(200); led_port=0x00; led_g=1; delay_1ms(200); watchdog_timer(); led_port=0x00; led_g=1; led_b=1; delay_1ms(200); led_port=0x00; led_b=1; delay_1ms(200); led_port=0x00; led_b=1; led_r=1; delay_1ms(200); watchdog_timer(); } } //************************************** 4 if(ee_temp1==0xf3) { uint fade_1,fade_2,fade_3,fade_4; fade_2=416; //384 fade_4=416; //384 while(fade_2!=0&ee_temp==0x03) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x10; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x03) { fade_2=0; } watchdog_timer(); fade_2=416; //384 fade_4=416; //384 } } if(ee_temp1==0xf2) { uint fade_1,fade_2,fade_3,fade_4; fade_2=384; //384 fade_4=384; //384 while(fade_2!=0&ee_temp==0x02) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x20; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x02) { fade_2=0; } watchdog_timer(); fade_2=384; //384 fade_4=384; //384 } } if(ee_temp1==0xf1) { uint fade_1,fade_2,fade_3,fade_4; fade_2=348; //384 fade_4=348; //384 while(fade_2!=0&ee_temp==0x01) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x08; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x01) { fade_2=0; } watchdog_timer(); fade_2=348; //384 fade_4=348; //384 } } if(ee_temp1==0xf0) { while(ee_temp==0) { led_port=0x00; led_r=1; delay_1ms(500); watchdog_timer(); led_port=0x00; led_g=1; delay_1ms(500); led_port=0x00; led_b=1; delay_1ms(500); watchdog_timer(); } } //******************************************** 5 if(ee_temp1==0xef) { uint fade_1,fade_2,fade_3,fade_4; fade_2=384; //384 fade_4=384; //384 while(fade_2!=0&ee_temp==0x0f) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x10; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0f) { fade_2=0; } watchdog_timer(); fade_2=384; //384 fade_4=384; //384 } } if(ee_temp1==0xee) { uint fade_1,fade_2,fade_3,fade_4; fade_2=320; //384 fade_4=320; //384 while(fade_2!=0&ee_temp==0x0e) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x20; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0e) { fade_2=0; } watchdog_timer(); fade_2=320; //384 fade_4=320; //384 } } if(ee_temp1==0xed) { uint fade_1,fade_2,fade_3,fade_4; fade_2=320; //384 fade_4=320; //384 while(fade_2!=0&ee_temp==0x0d) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x08; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0d) { fade_2=0; } watchdog_timer(); fade_2=320; //384 fade_4=320; //384 } } if(ee_temp1==0xec) fade(); //******************************************* 6 if(ee_temp1==0xeb) { led_port=0x00; led_r=1; led_g=1; watchdog_timer(); } if(ee_temp1==0xea) { led_port=0x00; //led_r=0; led_g=1; led_b=1; watchdog_timer(); } if(ee_temp1==0xe9) { led_port=0x00; led_r=1; //led_g=0; led_b=1; watchdog_timer(); } if(ee_temp1==0xe8) fade1(); } void fade() { // uchar i; uint fade_1,fade_2,fade_3,fade_4; fade_2=512; fade_4=511; while(fade_2!=0&ee_temp==0x0c) { for(fade_3=512;fade_3>fade_4;fade_3--) { led_port=0x10; delay(1); } fade_3=512; fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0c) { fade_2=0; } } watchdog_timer(); fade_2=512; fade_4=511; while(fade_2!=0&ee_temp==0x0c) { if(ee_temp!=0x0c) { fade_2=0; } for(fade_3=512;fade_3>fade_4;fade_3--) { led_port=0x20; delay(1); // watchdog_timer(); } fade_3=512; fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); // watchdog_timer(); } fade_1=0; fade_2--; } watchdog_timer(); fade_2=512; fade_4=511; while(fade_2!=0&ee_temp==0x0c) { if(ee_temp!=0x0c) { fade_2=0; } for(fade_3=512;fade_3>fade_4;fade_3--) { led_port=0x08; delay(1); watchdog_timer(); } fade_3=512; fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); watchdog_timer(); } fade_1=0; fade_2--; } watchdog_timer(); } void fade1() { // uchar i; uint fade_1,fade_2,fade_3,fade_4; fade_2=128; fade_4=127; while(fade_2!=0&ee_temp==0x08) { for(fade_3=128;fade_3>fade_4;fade_3--) { led_port=0x10; delay(1); } fade_3=128; fade_4--; for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x08) { fade_2=0; } } watchdog_timer(); fade_2=128; fade_4=127; while(fade_2!=0&ee_temp==0x08) { if(ee_temp!=0x08) { fade_2=0; } for(fade_3=128;fade_3>fade_4;fade_3--) { led_port=0x20; delay(1); } fade_3=128; fade_4--; for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; } watchdog_timer(); fade_2=128; fade_4=127; while(fade_2!=0&ee_temp==0x08) { if(ee_temp!=0x08) { fade_2=0; } for(fade_3=128;fade_3>fade_4;fade_3--) { led_port=0x08; delay(1); } fade_3=128; fade_4--; for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; } watchdog_timer(); } void init() { led_port=0x00; /* led_r=1; delay_1ms(500); led_port=0x00; led_g=1; delay_1ms(500); led_port=0x00; led_b=1; delay_1ms(500); led_port=0x00; */ delay_1ms(2); WDT_CONTR=0x3f; delay_1ms(500); } //******************************** void main() { init(); Flag2=0; SP=0x60; //堆棧指針 EX0=1; //允許外部中斷0,用于檢測紅外遙控器按鍵 EA=1; num=255; while(1) { calc(); } } //******************************************************************** /*------------------------外部中斷0程序-------------------------*/ /*------------------主要用于處理紅外遙控鍵值--------------------*/ void int0() interrupt 0 { uchar i; Flag2=0; /////// k=0; EX0=0; //檢測到有效信號關中斷,防止干擾 for(i=0;i<4;i++) { delay1000(); if(IR_RE==1){k=1;} //剛開始為9ms的引導碼. } led_port=0x00; if(k==0) { IR_decode(); //如果接收到的是有效信號,則調用解碼程序 if(date[3]>=0xe8) { if(date[3]<=0xfb) { temp1=date[3]; EEPROM_ERASE(0x2000); //STC_EEROM_0X2000 temp1 EEPROM_write(0x2000,temp1); EEPROM_read(0x2000); ee_temp1=ISP_DATA; ee_temp=ee_temp1&0x0f; /* temp=date[3]&0x0f; EEPROM_ERASE(0x2004); //STC_EEROM_0X2004 temp EEPROM_write(0x2004,temp); */ } else { EEPROM_read(0x2000); ee_temp1=ISP_DATA; ee_temp=ee_temp1&0x0f; } } delay2400(); delay2400(); delay2400(); delay_1ms(500); } EX0=1; //開外部中斷,允許新的遙控按鍵 }

    標簽: RGB 紅外遙控

    上傳時間: 2016-07-02

    上傳用戶:184890962

  • 熱分析動力學(第2版)

    本書以熱分析動力學方程為主線,匯集了20世紀后50年國內外熱分析動力學研究的最新學術成果.本書內容共分三部分:第一部分包括熱分析動力學理論、方法和技術的回顧;兩類動力學方程和三類溫度積分式的數學推導;最概然機理函數的推斷.第二部分系統地總結了近50年發展起來的用微、積分法處理熱分析曲線的成果.第三部分涉及動力學補償效應的研究;熱爆炸臨界溫度的估算;動力學參數的數值模擬;誘導溫度與誘導時間的關系;定溫熱分析曲線分析法.

    標簽: 熱分析 動力學

    上傳時間: 2016-07-11

    上傳用戶:yqstar

  • DL/T645 — 2007

    本標準與 DL/T645-199T相 比主要差別如下: — — 調整物理層通信接 口參數與 GB/TI98叨 ,1— 2005《 自動抄表系統低層通信協議 第 1部 分 :直 接本地數據交換》 定義一致 ; — — 控制碼重新定義,增 加讀通信地址 、 凍結、 電表清零、 事件清零命令 ; — — 應用層強調對特殊命令幀 的密碼驗證 ,要 求從站記錄操作者代碼 ; — — 數據標識 由原來的 2字 節改為 4字 節表示 ,完 善事件記錄、凍結量、 負荷記錄的具體抄讀規則 。 本標準 的實施將規范多功能 電能表 的通信接 口,有 利于計量產 品質量的提高,對 用 電管理部 門改革 人工抄表 ,實 現遠方信息傳輸 ,提 高用 電管理水平起到推進作用 。

    標簽: 2007 645 DL

    上傳時間: 2017-02-04

    上傳用戶:aarons大叔

主站蜘蛛池模板: 咸宁市| 临泽县| 明光市| 吕梁市| 班玛县| 黄梅县| 都昌县| 芦溪县| 桃江县| 宣武区| 时尚| 罗田县| 乌恰县| 陆良县| 鹤山市| 宽甸| 大城县| 柘荣县| 涪陵区| 明水县| 德兴市| 木里| 朝阳市| 金溪县| 木兰县| 鸡泽县| 江口县| 云安县| 拜泉县| 广灵县| 张北县| 宜兰县| 福海县| 洛阳市| 土默特右旗| 岳西县| 台山市| 措勤县| 中牟县| 都昌县| 通州区|