隨著紅外焦平面陣列的不斷發(fā)展,紅外技術的應用范圍將越來越廣泛。焦平面面陣探測器的一個最大的缺點是固有的非均勻性。本文首先介紹了紅外熱成像技術的發(fā)展,討論了紅外焦平面陣列的基本原理和工作方式,分析了紅外非均勻性產生的原因。其次研究了幾種主要的非均勻校正方法以及焦平面陣列元的盲元檢測和補償?shù)姆椒ǎ瑢t外圖像處理技術做了研究。 本文研究的探測器是法國ULIS公司的320×240非制冷微測輻射熱計焦平面陣列探測器。主要研究對其輸出信號進行非均勻性校正和圖像增強。最后針對這一課題編寫了基于FPGA的兩點校正、兩點加一點校正、全局非均勻校正算法和紅外圖像直方圖均衡化增強程序,并對三種校正方法做了比較。
上傳時間: 2013-08-03
上傳用戶:qq442012091
文中簡單闡述了紅外輻射機理,論述了紅外焦平面陣列技術的發(fā)展狀況。紅外成像系統(tǒng),尤其是紅外焦平面陣列,由于探測器材料和制造工藝的原因,各像素點之間的靈敏度存在差別,甚至存在一些缺陷點,各個探測單元特征參數(shù)不完全一致,因而存在著較大的非均勻性,降低了圖像的分辨率,影響了紅外成像系統(tǒng)的有效作用距離。實時非均勻性校正是提高和改善紅外圖像質量的一項重要技術。 論文建立了描述其非均勻性的數(shù)學模型,分析了紅外焦平面陣列非均勻性產生的原因及特點,討論了幾種常用的非均勻性校正的方法,指出了其各自的優(yōu)缺點和適應場合。 根據(jù)紅外探測器光譜響應的特點和基于參考源的兩點溫度非均勻性校正理論,采用FPGA+DSP實現(xiàn)紅外成像系統(tǒng)實時非均勻性兩點校正,設計完成了相應的紅外焦平面陣列非均勻性校正硬件電路。對該系統(tǒng)中各個模塊的功能及電路實現(xiàn)進行了詳細的描述,并給出了相應的結構框圖。同時給出了該圖像處理器的部分軟件流程圖。該方法動態(tài)范圍大而且處理速度快,適用于紅外成像系統(tǒng)實時的圖像處理場合。實踐表明,該方案取得了較為滿意的結果。
上傳時間: 2013-04-24
上傳用戶:shinnsiaolin
隨著微電子技術的發(fā)展,國內外紅外成像技術也得到了廣泛的應用和研究。各國軍方針對現(xiàn)代戰(zhàn)爭和未來信息戰(zhàn)的新形勢,對熱成像技術提出了更高的要求,希望今后能研制出性能更佳、體積更小、分辨率和靈敏度更高、作用距離更遠、價格更低的紅外成像系統(tǒng)。 CCD 成像系統(tǒng)的關鍵技術是 CCD 器件設計和圖像處理。本課題通過對CCD 圖像處理技術的研究,采用嵌入式 Nios Ⅱ+FPGA 的工作方式,充分發(fā)揮嵌入式 Nios Ⅱ處理器靈活性和 FPGA 處理速度快的優(yōu)點,構建出結構靈活、處理速度高以及功能完善的圖像處理系統(tǒng)。該系統(tǒng)能同時實時實現(xiàn)兩點校正算法、加權濾波算法、對比度增強算法以及疵點補償?shù)榷囗椆δ堋?本系統(tǒng)成功應用于國內某研究所研制的目前國內最大型面陣 (PtSi 512×512) CCD 焦平面探測器成像組件中,得到了良好的成像效果;同時,由該處理系統(tǒng)構成的 InGaAs 成像組件也處于國內領先水平。從長遠來看,該項技術應用于中電 44 所多種成像組件項目的研究中,推動了 PtSi 256×256、PtSi 512×512 焦平面探測器成像組件以及 4096×96TDI CCD 成像組件的工程化應用進程。
上傳時間: 2013-05-22
上傳用戶:元宵漢堡包
實時紅外圖像處理是紅外成像制導的關鍵技術。本課題來源于兵器工業(yè)部第209研究所承擔研制的紅外成像制導技術背景下的紅外圖像信息處理機項目。 本文在總結國內外研究現(xiàn)狀的基礎上,做了大量紅外圖像信息處理系統(tǒng)硬件部分的設計工作。主要有以下幾點: 1.系統(tǒng)方案和總體結構設計 在分析比較目前幾種主流系統(tǒng)方案后,將紅外圖像處理機設計成“雙FPGA+雙DSP+CPCI”結構。選用ADI公司TigerSHARK系列的DSP芯片ADSP-TS201作為系統(tǒng)高層算法處理的核心處理器,選用Altera公司的FPGA芯片StratixⅡ EP2S60F67214作為底層算法處理和接口控制的核心,選用高速CPCI總線作為紅外圖像信息處理機與主機的通訊橋梁。 2.FPGA部分的設計是本課題的核心,對FPGA部分進行了設計和調試 (1)圖像預處理模塊:FPGA負責系統(tǒng)的底層預處理算法和相應控制。首先對采集來的圖像數(shù)據(jù)進行中值濾波和直方圖統(tǒng)計,然后按照鏈路口(Linkport)的通信協(xié)議,將預處理后的圖像數(shù)據(jù)實時地從FPGA傳給DSP。 (2)DSP-CPCI橋接模塊:FPGA負責DSP與CPCI的接口,將DSP處理后的結果通過DSP-CPCI橋接模塊傳給主機。 聯(lián)調實驗測試表明,實時紅外圖像信息處理成功實現(xiàn)了對典型紅外目標的檢測、識別和跟蹤,從而驗證系統(tǒng)核心FPGA部分的設計是成功的。
上傳時間: 2013-07-13
上傳用戶:gjzeus
隨著電子技術和計算機技術的飛速發(fā)展,視頻圖像處理技術近年來得到極大的重視和長足的發(fā)展,其應用范圍主要包括數(shù)字廣播、消費類電子、視頻監(jiān)控、醫(yī)學成像及文檔影像處理等領域。當前視頻圖像處理主要問題是當處理的數(shù)據(jù)量很大時,處理速度慢,執(zhí)行效率低。而且視頻算法的軟件和硬件仿真和驗證的靈活性低。 本論文首先根據(jù)視頻信號的處理過程和典型視頻圖像處理系統(tǒng)的構成提出了基于FPGA的視頻圖像處理系統(tǒng)總體框圖;其次選擇視頻轉換芯片SAA7113,完成視頻圖像采集模塊的設計,主要分三步完成:1)配置視頻轉換芯片的工作模式,完成視頻轉化芯片SAA7113的初始化:2)通過分析輸出數(shù)據(jù)流的格式標準,來識別奇偶場信號、場消隱信號和有效行數(shù)據(jù)的開始和結束信號三種控制信號,并根據(jù)控制信號,用Verilog硬件描述語言編程實現(xiàn)圖像數(shù)據(jù)的采集;3)分析SRAM的讀寫控制時序,采用兩塊SRAM完成圖像數(shù)據(jù)的存儲。然后編寫軟件測試文件,在ISE Simulator仿真環(huán)境進行程序測試與運行,并分析仿真結果,驗證了數(shù)據(jù)采集和存儲的正確性;最后,對常用視頻圖像算法的MATLAB仿真,選擇適當?shù)乃阕樱捎霉ぞ進ATLAB、System Generator for DSP和ISE,利用模塊構建方式,搭建視頻算法平臺,實現(xiàn)圖像平滑濾波、銳化濾波算法,在Simulink中仿真并自動生成硬件描述語言和網表,對資源的消耗做簡要分析。 本論文的創(chuàng)新點是采用新的開發(fā)環(huán)境System Generator for DSP實現(xiàn)視頻圖像算法。這種開發(fā)視頻圖像算法的方式靈活性強、設計周期短、驗證方便、是視頻圖像處理發(fā)展的必然趨勢。
標簽: FPGA 視頻圖像 處理系統(tǒng)
上傳時間: 2013-07-28
上傳用戶:lingzhichao
計算機圖形學中真實感成像包括兩部分內容:物體的精確圖形表示;場景中光照效果的適當?shù)拿枋觥9庹招Чü獾姆瓷洹⑼该餍浴⒈砻婕y理和陰影。對物體進行投影,然后再可見面上產生自然光照效果,可以實現(xiàn)場景的真實感顯示。光照明模型主要用于物體表面某點處的光強度計算。面繪制算法是通過光照模型中的光強度計算,以確定場景中物體表面的所有投影像素點的光強度。Phong明暗處理算法是生成真實感3D圖像最佳算法之一。但是由于其大量的像素級運算和硬件難度而在實現(xiàn)實時真實感圖形繪制中被Gotuaud明暗處理算法所取代。VLSI技術的發(fā)展以及對于高真實感實時圖形的需求使得Phong明暗處理算法的實現(xiàn)成為可能。利用泰勒級數(shù)近似的Fast Phong明暗處理算法適合硬件實現(xiàn)。此算法需要存儲大量數(shù)據(jù)的ROM。這增加了實現(xiàn)的難度。 本文完成了以下工作: 1、本文簡述了實時真實感圖形繪制管線,詳細敘述了所用到的光照明模型和明暗處理方法,并對幾種明暗處理方法的效果作了比較,實驗結果表明Fast Phong明暗處理算法適用于實時真實感圖形繪制。 2、在熟悉Xilinx公司FPGA芯片結構及其開發(fā)流程的基礎上,結合Xilinx公司提供的FPGA開發(fā)工具ISE 7.1i,仿真工具為ISE simulator,綜合工具為XST;完成了Fast Phong明暗處理模塊的FPGA設計與實現(xiàn)。綜合得到的電路的最高頻率為54.058MHz。本文的Fast Phong明暗處理硬件模塊適用于實時真實感圖形繪制。 3、本文通過誤差分析,提出了優(yōu)化的查找表結構。通過在FPGA上對本文所提結構進行驗證。結果表明,本方案在提高速度、精度的同時將ROM的數(shù)據(jù)量從64K*8bit減少至13K*8bit。
上傳時間: 2013-06-21
上傳用戶:ghostparker
數(shù)字超聲診斷設備在臨床診斷中應用十分廣泛,研制全數(shù)字化的醫(yī)療儀器已成為趨勢。盡管很多超聲成像儀器設計制造中使用了數(shù)字化技術,但是我們可以說現(xiàn)代VLSI 和EDA 技術在其中并沒有得到充分有效的應用。隨著現(xiàn)代電子信息技術的發(fā)展,PLD 在很多與B 型超聲成像或多普勒超聲成像有關的領域都得到了較好的應用,例如數(shù)字通信和相控雷達領域。 在研究現(xiàn)代超聲成像原理的基礎上,我們首先介紹了常見的數(shù)字超聲成像儀器的基本結構和模塊功能,同時也介紹了現(xiàn)代FPGA 和EDA 技術。隨后我們詳細分析討論了B 超中,全數(shù)字化波束合成器的關鍵技術和實現(xiàn)手段。我們設計實現(xiàn)了片內高速異步FIFO 以降低采樣率,仿真結果表明資源使用合理且訪問時間很小。正交檢波方法既能給出灰度超聲成像所需要的回波的幅值信息,也能給出多普勒超聲成像所需要的回波的相移信息。我們設計實現(xiàn)了基于直接數(shù)字頻率合成原理的數(shù)控振蕩器,能夠給出一對幅值和相位較平衡的正交信號,且在FPGA 片內實現(xiàn)方案簡單廉價。數(shù)控振蕩器輸出波形的頻率可動態(tài)控制且精度較高,對于隨著超聲在人體組織深度上的穿透衰減,導致回波中心頻率下移的聲學物理現(xiàn)象,可視作將回波接收機的中心頻率同步動態(tài)變化進行補償。 還設計實現(xiàn)了B 型數(shù)字超聲診斷儀前端發(fā)射波束聚焦和掃描控制子系統(tǒng)。在單片F(xiàn)PGA 芯片內部設計實現(xiàn)了聚焦延時、脈寬和重復頻率可動態(tài)控制的發(fā)射驅動脈沖產生器、線掃控制、探頭激勵控制、功能碼存儲等功能模塊,功能仿真和時序分析結果表明該子系統(tǒng)為設計實現(xiàn)高速度、高精度、高集成度的全數(shù)字化超聲診斷設備打下了良好的基礎,將加快其研發(fā)和制造進程,為生物醫(yī)學電子、醫(yī)療設備和超聲診斷等方面帶來新思路。
上傳時間: 2013-05-30
上傳用戶:tonyshao
隨著成像技術的飛速發(fā)展和圖像處理技術的不斷更新,圖像跟蹤技術目前已經廣泛應用于偵察、制導等軍事領域,同時在導航、智能交通等民用領域也開辟了廣闊的應用前景。與其他傳統(tǒng)的跟蹤方式相比,圖像跟蹤具有直觀、實時、精度高...
標簽: FPGA 圖像跟蹤系統(tǒng)
上傳時間: 2013-06-22
上傳用戶:shinesyh
論文研究了基于Bayer格式的CCD原始圖像的顏色插值算法,并將設計的改進算法應用到以FPGA為核心的圖像采集前端。出于對成本和體積的考慮,一般的數(shù)字圖像采集系統(tǒng)采用單片CCD或CMOS圖像傳感器,然后在感光表面覆蓋一層顏色濾波陣列(CFA),經過CFA后每個像素點只能獲得物理三基色(紅、綠、藍)其中一種分量,形成馬賽克圖像。為了獲得全彩色圖像,就要利用周圍像素點的值近似地計算出被濾掉的顏色分量,稱這個過程為顏色插值。由于當前對圖像采集系統(tǒng)的實時性要求越來越高,業(yè)內已經開始廣泛采用FPGA來進行圖像處理,充分發(fā)揮硬件并行運算的速度優(yōu)勢,以求在處理速度和成像質量兩方面均達到滿意的效果。。主要的工作內容如下: 本文首先介紹了彩色濾波陣列、圖像色彩恢復和插值算法的概念,然后分析和研究了當下常用的顏色插值算法,如雙線性插值算法、加權系數(shù)法等等,指出了各個算法的特點和不足;接下來針對硬件系統(tǒng)并行運算的特性和實時性處理的要求,結合其中兩種算法的思路設計了適用于硬件的改進算法,該算法主要引入了方向標志位的概念以及平滑的邊界仲裁法則來檢測邊界,借鑒利用梯度的三角函數(shù)關系來判斷邊界方向,通過簡化且適用于硬件的方法計算加權系數(shù),從而選擇合適的方向進行插值。 在介紹了FPGA用于圖像處理的優(yōu)勢后,針對FPGA的特點采用模塊化結構設計,詳細闡述了本文算法的軟件實現(xiàn)過程及所使用到的關鍵技術;文章設計了一個以FPGA為核心的前端圖像采集平臺,并將改進插值算法應用到整個系統(tǒng)當中。詳細分析了采集前端的硬件需求,討論了核心芯片的選型和硬件平臺設計中的注意事項,完成了印制電路板的制作。 文章通過MATLAB仿真得到了量化的性能評估數(shù)據(jù),并選取幾種算法在硬件平臺上運行,得到了實驗圖片。最后結合圖片的視覺效果和仿真數(shù)據(jù)對幾種不同算法的效果進行了評估和比較,證明改進的算法對圖像質量有所增強,取得了良好的效果。
上傳時間: 2013-06-11
上傳用戶:it男一枚
圖像處理技術應用越來越廣泛,特別是工業(yè)檢測領域。然而,圖像處理技術應用的基礎是圖像的獲取,為了更加靈活地設計各種應用產品,本課題研究基于FPGA的面陣 CCD驅動傳輸電路設計,利用該電路能夠獲取高質量、高分辨率的圖像,為后續(xù)的圖像處理技術應用打下基礎。本文首先介紹了研究意義、CCD圖像傳感器的發(fā)展以及FPGA的產生與發(fā)展,接著提出了面陣CCD成像系統(tǒng)總體設計方案,然后針對關鍵電路的設計進行詳盡的分析和說明,這些電路包括時序發(fā)生電路、存儲器控制電路、USB接口電路以及電源調理電路。其中時序發(fā)生電路主要用于產生CCD正常工作所需的各種時序信號以及A/D變換芯片AD9824 所需的工作時序,這些時序都是由FPGA產生的,文中給出了FPGA邏輯設計的基本過程以及仿真波形。本系統(tǒng)采用SDRAM緩存圖像信號,為了完成SDRAM的寫入、讀出以及定時刷新,利用FPGA生成存儲器控制電路。系統(tǒng)采用USB接口與計算機通信,因此FPGA 中設計了相應邏輯電路與CY7C68013A USB接口芯片實現(xiàn)信號握手及數(shù)據(jù)通信,進而與 PC機通信。為了保證各個芯片正常工作,設計電源調理電路實現(xiàn)將輸入5V電源轉換成多種電壓向各個芯片供電。經過初步調試,并根據(jù)仿真結果判斷驅動傳輸電路基本達到設計要求。關鍵詞:FPGA,CCD,A/D變換,SDRAM,USB,驅動時序
上傳時間: 2013-04-24
上傳用戶:prczsf