亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

遠(yuǎn)程計(jì)算機(jī)

  • 給定n 個整數a ,a , ,an 1 2  組成的序列

    給定n 個整數a ,a , ,an 1 2  組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有 0 = å = j k i k a ,則稱序列區間i i j a , a , , a +1  為一個零和區間,相應的區間長度為j-i+1。

    標簽: 61516 an 整數 序列

    上傳時間: 2013-12-21

    上傳用戶:偷心的海盜

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2014-01-15

    上傳用戶:hongmo

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2013-12-26

    上傳用戶:dreamboy36

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2016-06-28

    上傳用戶:change0329

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2014-09-03

    上傳用戶:jjj0202

  • Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等

    Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等于m并且與m互質的正整數的個數。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實際代碼中可以用類似素數篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數的個數 設n的素因子有p1, p2, p3, … pk 包含p1, p2…的個數為n/p1, n/p2… 包含p1*p2, p2*p3…的個數為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)

    標簽: Euler lt phi 函數

    上傳時間: 2014-01-10

    上傳用戶:wkchong

  • //Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p

    //Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對于約數:divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數條件 對于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對于本題: 1. 篩素數的時候首先會判斷i是否是素數。 根據定義,當 x 是素數時 phi[x] = x-1 因此這里我們可以直接寫上 phi[i] = i-1 2. 接著我們會看prime[j]是否是i的約數 如果是,那么根據上述推導,我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實這里prime[j]-1就是phi[prime[j]],利用了歐拉函數的積性) 經過以上改良,在篩完素數后,我們就計算出了phi[]的所有值。 我們求出phi[]的前綴和 */

    標簽: phi Euler else 函數

    上傳時間: 2016-12-31

    上傳用戶:gyq

  • LCD CPLD(復雜可編程邏輯器件)

    LCD 因其輕薄短小,低功耗,無輻射,平面直角顯示,以及影像穩定等特點,當今應用非常廣泛。CPLD(復雜可編程邏輯器件) 是一種具有豐富可編程功能引腳的可編程邏輯器件,不僅可實現常規的邏輯器件功能,還可以實現復雜而獨特的時序邏輯功能。并且具有ISP (在線可編\\r\\n程) [1 ] 功能,便于進行系統設計和現場對系統進行功能修改、調試、升級。通常CPLD 芯片都有著上萬次的重寫次數,即用CPLD[ 2 ] 進行硬件設計,就像軟件設計一樣靈活、方便。而現今LCD的控制大都采用

    標簽: CPLD LCD 可編程邏輯器件

    上傳時間: 2013-08-16

    上傳用戶:zhliu007

  • 算法介紹 矩陣求逆在程序中很常見

    算法介紹 矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。

    標簽: 算法 矩陣求逆 程序

    上傳時間: 2015-04-09

    上傳用戶:wang5829

  • 矩陣相乘的Strassen算法

    矩陣相乘的Strassen算法,其中 乘積矩陣C = H*H,H =(hij)n*n 1. hij = , i,j=1,…8 2. i,j=1,…12 矩陣H =(hij)n*n自動生成,取小數點后面6位計算

    標簽: Strassen 矩陣相乘 算法

    上傳時間: 2014-01-17

    上傳用戶:wff

主站蜘蛛池模板: 潼南县| 逊克县| 溧阳市| 集安市| 舞阳县| 龙陵县| 上杭县| 汤原县| 禹城市| 鄂托克前旗| 青海省| 霍城县| 祁东县| 洛阳市| 灯塔市| 九寨沟县| 连城县| 共和县| 蛟河市| 错那县| 都安| 泽普县| 宿迁市| 宁阳县| 比如县| 万州区| 乐东| 克拉玛依市| 霍林郭勒市| 永兴县| 修水县| 临邑县| 阳城县| 犍为县| 安福县| 新津县| 时尚| 新营市| 连城县| 福清市| 色达县|