本書主要闡述設(shè)計射頻與微波功率放大器所需的理論、方法、設(shè)計技巧,以及將分析計算與計算機(jī)輔助設(shè)計相結(jié)合的優(yōu)化設(shè)計方法。這些方法提高了設(shè)計效率,縮短了設(shè)計周期。本書內(nèi)容覆蓋非線性電路設(shè)計方法、非線性主動設(shè)備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設(shè)計、寬帶功率放大器及通信系統(tǒng)中的功率放大器設(shè)計。 本書適合從事射頻與微波動功率放大器設(shè)計的工程師、研究人員及高校相關(guān)專業(yè)的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設(shè)計工程師,他曾經(jīng)任教于澳大利亞Linz大學(xué)、新加坡微電子學(xué)院、莫斯科通信和信息技術(shù)大學(xué)。他目前正在講授研究班課程,在該班上,本書作為國際微波年會論文集。 目錄 第1章 雙口網(wǎng)絡(luò)參數(shù) 1.1 傳統(tǒng)的網(wǎng)絡(luò)參數(shù) 1.2 散射參數(shù) 1.3 雙口網(wǎng)絡(luò)參數(shù)間轉(zhuǎn)換 1.4 雙口網(wǎng)絡(luò)的互相連接 1.5 實際的雙口電路 1.5.1 單元件網(wǎng)絡(luò) 1.5.2 π形和T形網(wǎng)絡(luò) 1.6 具有公共端口的三口網(wǎng)絡(luò) 1.7 傳輸線 參考文獻(xiàn) 第2章 非線性電路設(shè)計方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數(shù)法 2.2 時域分析 2.3 NewtOn.Raphscm算法 2.4 準(zhǔn)線性法 2.5 諧波平衡法 參考文獻(xiàn) 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓?fù)渲g的等效互換 3.3.4 非線性雙極器件模型 參考文獻(xiàn) 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數(shù)的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設(shè)計 4.4.2 寬帶高功率放大器設(shè)計 4.5 傳輸線類型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導(dǎo) 參考文獻(xiàn) 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網(wǎng)絡(luò) 5.3 四口網(wǎng)絡(luò) 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻(xiàn) 第6章 功率放大器設(shè)計基礎(chǔ) 6.1 主要特性 6.2 增益和穩(wěn)定性 6.3 穩(wěn)定電路技術(shù) 6.3.1 BJT潛在不穩(wěn)定的頻域 6.3.2 MOSFET潛在不穩(wěn)定的頻域 6.3.3 一些穩(wěn)定電路的例子 6.4 線性度 6.5 基本的工作類別:A、AB、B和C類 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實際外形 參考文獻(xiàn) 第7章 高效率功率放大器設(shè)計 7.1 B類過激勵 7.2 F類電路設(shè)計 7.3 逆F類 7.4 具有并聯(lián)電容的E類 7.5 具有并聯(lián)電路的E類 7.6 具有傳輸線的E類 7.7 寬帶E類電路設(shè)計 7.8 實際的高效率RF和微波功率放大器 參考文獻(xiàn) 第8章 寬帶功率放大器 8.1 Bode—Fan0準(zhǔn)則 8.2 具有集中元件的匹配網(wǎng)絡(luò) 8.3 使用混合集中和分布元件的匹配網(wǎng)絡(luò) 8.4 具有傳輸線的匹配網(wǎng)絡(luò) 8.5 有耗匹配網(wǎng)絡(luò) 8.6 實際設(shè)計一瞥 參考文獻(xiàn) 第9章 通信系統(tǒng)中的功率放大器設(shè)計 9.1 Kahn包絡(luò)分離和恢復(fù)技術(shù) 9.2 包絡(luò)跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開關(guān)模式和雙途徑功率放大器 9.6 前饋線性化技術(shù) 9.7 預(yù)失真線性化技術(shù) 9.8 手持機(jī)應(yīng)用的單片cMOS和HBT功率放大器 參考文獻(xiàn)
標(biāo)簽: 射頻 微波功率 放大器設(shè)計
上傳時間: 2013-04-24
上傳用戶:W51631
關(guān)于485通信的一些資料 和自己寫的一個仿真 三機(jī)通訊(一個主機(jī),2個從機(jī))
上傳時間: 2013-06-18
上傳用戶:gzming
通信技術(shù)新手入門資料,手機(jī)軟件開發(fā) GSM數(shù)字移動通信系統(tǒng)培訓(xùn)教材.pdf
標(biāo)簽: GSM 數(shù)字移動 培訓(xùn)教材
上傳時間: 2013-04-24
上傳用戶:西伯利亞狼
通信電路,主要為高頻電路,發(fā)射電路、接受電路、高頻放大、功率放大等電路。
標(biāo)簽: 通信電路
上傳時間: 2013-06-14
上傳用戶:zsjinju
數(shù)字信息時代帶來了“信息大爆炸”,使數(shù)據(jù)量大增,而數(shù)字圖像數(shù)據(jù)更是如此,如果不對圖像數(shù)據(jù)進(jìn)行有效的壓縮,那么圖像信息的存儲與傳輸將無法進(jìn)行。顯然,尋求一種高效的圖像壓縮系統(tǒng)具有很大的現(xiàn)實意義。 本文基于大規(guī)模現(xiàn)場可編程邏輯陣列(FPGA)和高速數(shù)字信號處理器(DSP)協(xié)同作業(yè),來完成實時圖像處理的系統(tǒng)設(shè)計。出于對系統(tǒng)設(shè)計上的性能和功耗方面的考慮,系統(tǒng)中FPGA 選用的是ALTERA公司的Cyclone系列芯片EP1C12Q240C8,DSP選用的是TI公司的55x系列芯片TMS320VC5502。該系統(tǒng)集圖像采集、壓縮、顯示和存儲功能于一體,其中DSP為主處理器負(fù)責(zé)圖像處理,F(xiàn)PGA為協(xié)處理器負(fù)責(zé)系統(tǒng)的所有數(shù)字邏輯控制。FPGA和DSP的工作之間形成流水,并且借助于一片雙口RAM(CY7C025AV-15AI)完成兩者的通訊。結(jié)合FPGA和DSP自身的特點,本文提出一種新穎的信息通信方式,借助于一片雙口RAM,其內(nèi)部按其存儲空間等分兩塊,利用乒乓技術(shù)完成對高速實時的圖像數(shù)據(jù)緩沖。 該系統(tǒng)從視頻采集、傳輸、壓縮到圖像存儲等整個過程的工作,分別由FPGA和DSP承擔(dān)。充分考慮到它們自身的優(yōu)缺點,在滿足系統(tǒng)實時性要求的同時,結(jié)構(gòu)靈活,便于以后的擴(kuò)展與升級。結(jié)果表明,在TMS320VC5502實現(xiàn)了對采集圖像的JPEG壓縮,效果良好且滿足了實時性的要求,因此系統(tǒng)的功能得到了總體上的驗證。 關(guān)鍵詞:圖像處理;FPGA;DSP;JPEG
上傳時間: 2013-06-11
上傳用戶:hjshhyy
通信與信息技術(shù)行業(yè)飛速發(fā)展,已成為我國支柱產(chǎn)業(yè)之一。隨著該行業(yè)的迅速發(fā)展,社會對具備實際動手能力人才的需求也不斷增加,高校通信教學(xué)改革勢在必行。在最初的通信原理實驗設(shè)備中每個實驗獨立占用一塊硬件資源,隨著EDA技術(shù)的發(fā)展,實驗設(shè)備廠商將CPLD/FPGA技術(shù)作為獨立的一項實驗內(nèi)容,加入到通信原理實驗設(shè)備中。FPGA技術(shù)具備集成度高、速度快和現(xiàn)場可編程的優(yōu)勢,適合高集成度和高速的時序運算。本文總結(jié)現(xiàn)有通信原理實驗設(shè)備的優(yōu)缺點,采用FPGA技術(shù)設(shè)計出集驗證性和設(shè)計性于一體,具備較高的綜合性和系統(tǒng)性的通信原理實驗系統(tǒng)。 本系統(tǒng)提供了一個開放性的硬件、軟件平臺,從培養(yǎng)學(xué)生實際動手能力出發(fā),利用FPGA在通用的硬件上實現(xiàn)所有實驗內(nèi)容。學(xué)生在本系統(tǒng)上除了能完成已固化的實驗內(nèi)容,還可以實現(xiàn)電子設(shè)計開發(fā)和驗證。這對培養(yǎng)學(xué)生的實踐能力大有裨益。 本文結(jié)合數(shù)字通信系統(tǒng)基本模型,把基于FPGA的通信原理實驗系統(tǒng)劃分為信號源模塊、發(fā)送端模塊、信道仿真模塊、接收端模塊和同步模塊幾部分。其中,模擬信號源采用DDS技術(shù),能夠生成非常高的頻率精度,可作為任意波形發(fā)生器。發(fā)送端和接收端模塊結(jié)合到一起組成多體制調(diào)制解調(diào)器,形成多頻段、多波形的軟件無線電系統(tǒng)。載波同步采用全數(shù)字COSTAS環(huán)提取技術(shù),具備良好的載波跟蹤特性,利用對載波相位不敏感 的Gardner算法跟蹤位同步信號。 本文首先介紹了通信原理實驗系統(tǒng)的研究現(xiàn)狀和意義;然后根據(jù)通信系統(tǒng)模型從《通信原理》各個章節(jié)中提煉出各模塊的實驗內(nèi)容,分別列出各實驗的數(shù)字化實現(xiàn)模型;繼而根據(jù)各模塊資源需求選取合適FPGA芯片,并給出硬件設(shè)計方案;最后,給出各模塊在FPGA上具體實現(xiàn)過程、系統(tǒng)測試結(jié)果及分析。測試和實際運行結(jié)果表明設(shè)計方法正確,且功能和技術(shù)指標(biāo)滿足設(shè)計要求。 關(guān)鍵詞:通信原理,實驗系統(tǒng),F(xiàn)PGA,DDS,多體制調(diào)制解調(diào),全數(shù)字COSTAS環(huán),位同步
標(biāo)簽: FPGA 通信原理 實驗系統(tǒng)
上傳時間: 2013-07-07
上傳用戶:evil
隨著列車自動化控制和現(xiàn)場總線技術(shù)的發(fā)展,基于分布式控制系統(tǒng)的列車通信網(wǎng)絡(luò)技術(shù)TCN(IEC-61375)在現(xiàn)代高速列車上得到廣泛應(yīng)用。TCN協(xié)議將列車通信網(wǎng)絡(luò)分為絞線式列車總線WTB和多功能車輛總線MVB,其中WTB實現(xiàn)對開式列車中的互聯(lián)車輛間的數(shù)據(jù)傳輸和通信,MVB實現(xiàn)車載設(shè)備的協(xié)同工作和互相交換信息。 本文介紹了國內(nèi)外列車通信網(wǎng)絡(luò)的發(fā)展情況和各自優(yōu)勢,分析了MVB一類設(shè)備底層協(xié)議。研究利用FPGA實現(xiàn)MVB控制芯片MVBC,用ARM作為微處理器實現(xiàn)MVB一類設(shè)備的嵌入式解決方案。其中,在FPGA芯片中主要采用自頂向下的設(shè)計方法,RLT硬件描述語言實現(xiàn)MVB控制芯片MVBC一類設(shè)備的主要功能,包括幀編碼器、幀解碼器和邏輯接口單元。ARM主要完成了軟件程序的編寫和實時操作系統(tǒng)的移植。在eCos實時操作系統(tǒng)上,完成了驅(qū)動和上層應(yīng)用程序,包括端口初始化、端口配置、幀收發(fā)指令和報文分析。 為了驗證設(shè)計的正確性,在設(shè)計的硬件平臺基礎(chǔ)上,搭建了MVB通信網(wǎng)絡(luò)的最小系統(tǒng),對網(wǎng)絡(luò)進(jìn)行系統(tǒng)功能測試。測試結(jié)果表明:設(shè)計方案正確,達(dá)到了設(shè)計的預(yù)期要求。
上傳時間: 2013-08-03
上傳用戶:bruce5996
現(xiàn)場可編程門陣列(FPGA)的發(fā)展已經(jīng)有二十多年,從最初的1200門發(fā)展到了目前數(shù)百萬門至上千萬門的單片F(xiàn)PGA芯片。現(xiàn)在,F(xiàn)PGA已廣泛地應(yīng)用于通信、消費類電子和車用電子類等領(lǐng)域,但國內(nèi)市場基本上是國外品牌的天下。 在高密度FPGA中,芯片上時鐘分布質(zhì)量變的越來越重要,時鐘延遲和時鐘偏差已成為影響系統(tǒng)性能的重要因素。目前,為了消除FPGA芯片內(nèi)的時鐘延遲,減小時鐘偏差,主要有利用延時鎖相環(huán)(DLL)和鎖相環(huán)(PLL)兩種方法,而其各自又分為數(shù)字設(shè)計和模擬設(shè)計。雖然用模擬的方法實現(xiàn)的DLL所占用的芯片面積更小,輸出時鐘的精度更高,但從功耗、鎖定時間、設(shè)計難易程度以及可復(fù)用性等多方面考慮,我們更愿意采用數(shù)字的方法來實現(xiàn)。 本論文是以Xilinx公司Virtex-E系列FPGA為研究基礎(chǔ),對全數(shù)字延時鎖相環(huán)(DLL)電路進(jìn)行分析研究和設(shè)計,在此基礎(chǔ)上設(shè)計出具有自主知識產(chǎn)權(quán)的模塊電路。 本文作者在一年多的時間里,從對電路整體功能分析、邏輯電路設(shè)計、晶體管級電路設(shè)計和仿真以及最后對設(shè)計好的電路仿真分析、電路的優(yōu)化等做了大量的工作,通過比較DLL與PLL、數(shù)字DLL與模擬DLL,深入的分析了全數(shù)字DLL模塊電路組成結(jié)構(gòu)和工作原理,設(shè)計出了符合指標(biāo)要求的全數(shù)字DLL模塊電路,為開發(fā)自我知識產(chǎn)權(quán)的FPGA奠定了堅實的基礎(chǔ)。 本文先簡要介紹FPGA及其時鐘管理技術(shù)的發(fā)展,然后深入分析對比了DLL和PLL兩種時鐘管理方法的優(yōu)劣。接著詳細(xì)論述了DLL模塊及各部分電路的工作原理和電路的設(shè)計考慮,給出了全數(shù)字DLL整體架構(gòu)設(shè)計。最后對DLL整體電路進(jìn)行整體仿真分析,驗證電路功能,得出應(yīng)用參數(shù)。在設(shè)計中,用Verilog-XL對部分電路進(jìn)行數(shù)字仿真,Spectre對進(jìn)行部分電路的模擬仿真,而電路的整體仿真工具是HSIM。 本設(shè)計采用TSMC0.18μmCMOS工藝庫建模,設(shè)計出的DLL工作頻率范圍從25MHz到400MHz,工作電壓為1.8V,工作溫度為-55℃~125℃,最大抖動時間為28ps,在輸入100MHz時鐘時的功耗為200MW,達(dá)到了國外同類產(chǎn)品的相應(yīng)指標(biāo)。最后完成了輸出電路設(shè)計,可以實現(xiàn)時鐘占空比調(diào)節(jié),2倍頻,以及1.5、2、2.5、3、4、5、8、16時鐘分頻等時鐘頻率合成功能。
上傳時間: 2013-06-10
上傳用戶:yd19890720
FPGA作為新一代集成電路的出現(xiàn),引起了數(shù)字電路設(shè)計的巨大變革。隨著FPGA工藝的不斷更新與改善,越來越多的用戶與設(shè)計公司開始使用FPGA進(jìn)行系統(tǒng)開發(fā),因此,PFAG的市場需求也越來越高,從而使得FPGA的集成電路板的工藝發(fā)展也越來越先進(jìn),在如此良性循環(huán)下,不久的將來,F(xiàn)PGA可以主領(lǐng)集成電路設(shè)計領(lǐng)域。正是由于FPGA有著如此巨大的發(fā)展前景與市場吸引力,因此,本文采用FPGA作為電路設(shè)計的首選。 @@ 隨著FPGA的開發(fā)技術(shù)日趨簡單化、軟件化,從面向硬件語言的VHDL、VerilogHDL設(shè)計語言,到現(xiàn)在面向?qū)ο蟮腟ystem Verilog、SystemC設(shè)計語言,硬件設(shè)計語言開始向高級語言發(fā)展。作為一個軟件設(shè)計人員,會很容易接受面向?qū)ο蟮恼Z言。現(xiàn)在軟件的設(shè)計中,算法處理的瓶頸就是速度的問題,如果采用專用的硬件電路,可以解決這個問題,本文在第一章第二節(jié)詳細(xì)介紹了軟硬結(jié)合的開發(fā)優(yōu)勢。另外,在第一章中還介紹了知識產(chǎn)權(quán)核心(IP Core)的發(fā)展與前景,特別是IP Core中軟核的設(shè)計與開發(fā),許多FGPA的開發(fā)公司開始爭奪軟核的開發(fā)市場。 @@ 數(shù)字電路設(shè)計中最長遇到的就是通信的問題,而每一種通信方式都有自己的協(xié)議規(guī)范。在CPU的設(shè)計中,由于需要高速的處理速度,因此其內(nèi)部都是用并行總線進(jìn)行通信,但是由于集成電路資源的問題,不可能所有的外部設(shè)備都要用并行總線進(jìn)行通信,因此其外部通信就需要進(jìn)行串行傳輸。又因為需要連接的外部設(shè)備的不同,因此就需要使用不同的串行通信接口。本文主要介紹了小型CPU中常用的三種通信協(xié)議,那就是SPI、I2C、UART。除了分別論述了各自的通信原理外,本文還特別介紹了一個小型CPU的內(nèi)部構(gòu)造,以及這三個通信協(xié)議在CPU中所處的位置。 @@ 在硬件的設(shè)計開發(fā)中,由于集成電路本身的特殊性,其開發(fā)流程也相對的復(fù)雜。本文由于篇幅的問題,只對總的開發(fā)流程作了簡要的介紹,并且將其中最復(fù)雜但是又很重要的靜態(tài)時序分析進(jìn)行了詳細(xì)的論述。在通信協(xié)議的開發(fā)中,需要注意接口的設(shè)計、時序的分析、驗證環(huán)境的搭建等,因此,本文以SPI數(shù)據(jù)通信協(xié)議的設(shè)計作為一個開發(fā)范例,從協(xié)議功能的研究到最后的驗證測試,將FPGA 的開發(fā)流程與關(guān)鍵技術(shù)等以實例的方式進(jìn)行了詳細(xì)的論述。在SPI通信協(xié)議的開發(fā)中,不僅對協(xié)議進(jìn)行了詳細(xì)的功能分析,而且對架構(gòu)中的每個模塊的設(shè)計都進(jìn)行了詳細(xì)的論述。@@關(guān)鍵詞:FPGA;SPI;I2C;UART;靜態(tài)時序分析;驗證環(huán)境
上傳時間: 2013-04-24
上傳用戶:vvbvvb123
隨著現(xiàn)代DSP、FPGA等數(shù)字芯片的信號處理能力不斷提高,基于軟件無線電技術(shù)的現(xiàn)代通信與信息處理系統(tǒng)也得到了更為廣泛的應(yīng)用。軟件無線電的基本思想是以一個通用、標(biāo)準(zhǔn)、模塊化的硬件系統(tǒng)作為其應(yīng)用平臺,把盡可能多的無線及個人通信和信號處理的功能用軟件來實現(xiàn),從而將無線通信新系統(tǒng)、新產(chǎn)品的開發(fā)逐步轉(zhuǎn)移到軟件上來。另一方面,現(xiàn)代信號處理系統(tǒng)對數(shù)據(jù)的處理速度、處理精度和動態(tài)范圍的要求也越來越高,需要每秒完成幾千萬到幾百億次運算。因此研制具備高速實時信號處理能力的通用硬件平臺越來越受到業(yè)界的重視。 @@ 目前的高速實時信號處理系統(tǒng)一般均采用DSP+FPGA的架構(gòu),其中DSP主要負(fù)責(zé)完成系統(tǒng)通信和基帶信號處理算法,而FPGA主要完成信號預(yù)處理等前端算法,并提供系統(tǒng)常用的各種外部接口邏輯。本文的主要工作就在于完成通用型高速實時信號處理系統(tǒng)的FPGA軟件設(shè)計。 @@ 本文提出了一種基于多DSP與FPGA的通用高速實時信號處理系統(tǒng)的架構(gòu)。綜合考慮各方面因素,作者選擇使用兩片ADSP-TS201浮點DSP以混合耦合模型構(gòu)成系統(tǒng)信號處理核心;以Xilinx公司最新的高性能FPGA Virtex-5系列的XC5VLX50T提供系統(tǒng)所需的各種接口,包括與ADSP-TS201的高速Linkport接口以及SPI、UART、SPORT等常用外設(shè)接口。此外,作者還選擇了ADSP-BF533定點DSP加入系統(tǒng)當(dāng)中以擴(kuò)展系統(tǒng)音視頻信號處理能力,體現(xiàn)系統(tǒng)的通用性。 @@ 基于FPGA的嵌入式系統(tǒng)設(shè)計正逐漸成為現(xiàn)代FPGA應(yīng)用的一個熱點。結(jié)合課題需要,作者以Xilinx公司的MicroBlze軟核處理器為核心在Virtex-5片內(nèi)設(shè)計了一個嵌入式系統(tǒng),完成了對CF卡、DDR2 SDRAM存儲器的讀寫控制,并利用片內(nèi)集成的三態(tài)以太網(wǎng)MAC硬核模塊,實現(xiàn)了系統(tǒng)與上位PC機(jī)之間的以太網(wǎng)通信鏈路。此外,為擴(kuò)展系統(tǒng)功能,適應(yīng)未來可能的軟件升級,進(jìn)一步提高系統(tǒng)的通用性,還將嵌入式實時操作系統(tǒng)μC/OS-II移植到MicroBlaze處理器上。 @@ 最后,作者介紹了基于Xilinx RocketIO GTP收發(fā)器的高速串行傳輸設(shè)計的關(guān)鍵技術(shù)和基本的設(shè)計方法,充分體現(xiàn)了目前高速實時信號處理系統(tǒng)的發(fā)展要求和趨勢。 @@關(guān)鍵詞:高速實時信號處理;FPGA;Virtex-5;嵌入式系統(tǒng);MicroBlaze
標(biāo)簽: FPGA 實時信號 處理系統(tǒng)
上傳時間: 2013-05-17
上傳用戶:wangchong
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1