性價比超高的U盤讀寫模塊-PB375A PB375A是一個傻瓜化、簡單化的U盤讀寫解決方案。您無需了解繁瑣USB HOST底層協議和FAT文件系統,只需要將您的系統mcu與模塊通過SPI或者UART通信,操作幾個簡單命令,便可完成讀寫創建刪除文件等等功能,讓您的系統非常簡單快速的增加U盤讀寫功能。該解決方案是目前國內性價比最高的解決方案。可以根據您的需求提供芯片或者模塊,為您不斷壓縮成本,占領市場先機。 基本不需要占用單片機系統的存儲空間,最少只需要幾個字節的RAM 和幾百字節的代碼。 價格 :相比51MCU+SL811/CH375方案有著極其強的價格優勢 功能:新建、刪除、讀寫數據,打開關閉文件 檢測U盤是否存在,滿足單片機及嵌入式系統讀寫操作U盤的要求。 技術特征 # ● 用于嵌入式系統/單片機讀寫U 盤、閃盤、閃存盤、USB 移動硬盤、USB 讀卡器等。 ● 支持符合USB 相關規范基于Bulk-Only 傳輸協議的各種U 盤/閃存盤/外置硬盤。 ● 支持文件系統FAT12 和FAT16 及FAT32 ● 文件操作功能:新建、刪除、讀寫數據,打開關閉文件等。 ● SPI接口,支持3.3V電平 ● 單芯片解決方案,該模塊只需要一個主控芯片外加少量的電容電阻便可,相對于51MCU+SL811/CH375的模塊,無論模塊尺寸還是成本都有著極大的優勢。 ● 模塊尺寸:31mm*36mm ● 該模塊可根據要求進行定制 # 豐富的例程代碼幫助您更好的開發 # 更多詳情請查看資料或與我們聯系
上傳時間: 2013-04-24
上傳用戶:安首宏A
本文介紹了一個以嵌入式USB 主機接口芯片SL811HS 為核心,采用U 盤為存儲介質的單片機低功耗海量存儲系統。該系統實現了儀器的便攜化,從而,為便攜儀器或嵌入式系統的外掛式海量存儲
上傳時間: 2013-06-14
上傳用戶:zhaoq123
目前,基于USB2.0接口的移動存儲設備已經被廣泛使用,尤其是采用USB-FLASH技術的U盤產品的容量由幾年前的16M增加到現在的4G以上。我們知道,U盤通常是作為計算機的外部存儲設備,能否脫離計算機直接向U盤讀寫文件呢?答案是肯定的。
上傳時間: 2013-07-06
上傳用戶:風之驕子
隨著半導體工藝的飛速發展和芯片設計水平的不斷進步,ARM微處理器的性能得到大幅度地提高,同時其芯片的價格也在不斷下降,嵌入式系統以其獨有的優勢,己經廣泛地滲透到科學研究和日常生活的各個方面。 本文以ARM7 LPC2132處理器為核心,結合蓋革一彌勒計數管對Time-To-Count輻射測量方法進行研究。ARM結構是基于精簡指令集計算機(RISC)原理而設計的,其指令集和相關的譯碼機制比復雜指令集計算機要簡單得多,使用一個小的、廉價的ARM微處理器就可實現很高的指令吞吐量和實時的中斷響應。基于ARM7TDMI-S核的LPC2132微處理器,其工作頻率可達到60MHz,這對于Time-To-Count技術是非常有利的,而且利用LPC2132芯片的定時/計數器引腳捕獲功能,可以直接讀取TC中的計數值,也就是說不再需要調用中斷函數讀取TC值,從而大大降低了計數前雜質時間。本文是在我師兄呂軍的《Time-To-Count測量方法初步研究》基礎上,使用了高速的ARM芯片,對基于MCS-51的Time-To-Count輻射測量系統進行了改進,進一步論證了采用高速ARM處理器芯片可以極大的提高G-M計數器的測量范圍與測量精度。 首先,討論了傳統的蓋革-彌勒計數管探測射線強度的方法,并指出傳統的脈沖測量方法的不足。然后討論了什么是Time-To-Count測量方法,對Time-To-Count測量方法的理論基礎進行分析。指出Time-To-Count方法與傳統的脈沖計數方法的區別,以及采用Time-To-Count方法進行輻射測量的可行性。 接著,詳細論述基于ARM7 LPC2132處理器的Time-To-Count輻射測量儀的原理、功能、特點以及輻射測量儀的各部分接口電路設計及相關程序的編制。 最后得出結論,通過高速32位ARM處理器的使用,Time-To-Count輻射測量儀的精度和量程均得到很大的提高,對于Y射線總量測量,使用了ARM處理器的Time-To-Count輻射測量儀的量程約為20 u R/h到1R/h,數據線性程度也比以前的Time-To-CotJnt輻射測量儀要好。所以在使用Time-To-Count方法進行的輻射測量時,如何減少雜質時間以及如何提高計數前時間的測量精度,是決定Time-To-Count輻射測量儀性能的關鍵因素。實驗用三只相同型號的J33G-M計數管分別作為探測元件,在100U R/h到lR/h的輻射場中進行試驗.每個測量點測量5次取平均,得出隨著照射量率的增大,輻射強度R的測量值偏小且與輻射真實值之間的誤差也隨之增大。如果將測量誤差限定在10%的范圍內,則此儀器的量程范圍為20 u R/h至1R/h,量程跨度近六個數量級。而用J33型G-M計數管作常規的脈沖測量,量程范圍約為50 u R/h到5000 u R/h,充分體現了運用Time-To-Count方法測量輻射強度的優越性,也從另一個角度反應了隨著計數前時間的逐漸減小,雜質時間在其中的比重越來越大,對測量結果的影響也就越來越嚴重,盡可能的減小雜質時間在Time-To-Count方法輻射測量特別是測量高強度輻射中是關鍵的。筆者用示波器測出此輻射儀器的雜質時間約為6.5 u S,所以在計算定時器值的時候減去這個雜質時間,可以增加計數前時間的精確度。通過實驗得出,在標定儀器的K值時,應該在照射量率較低的條件下行,而測得的計數前時間是否精確則需要在照射量率較高的條件下通過儀器標定來檢驗。這是因為在照射量率較低時,計數前時間較大,雜質時間對測量結果的影響不明顯,數據線斜率較穩定,適宜于確定標定系數K值,而在照射量率較高時,計數前時間很小,雜質時間對測量結果的影響較大,可以明顯的在數據線上反映出來,從而可以很好的反應出儀器的性能與量程。實驗證明了Time-To-Count測量方法中最為關鍵的環節就是如何對計數前時間進行精確測量。經過對大量實驗數據的分析,得到計數前時間中的雜質時間可分為硬件雜質時間和軟件雜質時間,并以軟件雜質時間為主,通過對程序進行合理優化,軟件雜質時間可以通過程序的改進而減少,甚至可以用數學補償的方法來抵消,從而可以得到比較精確的計數前時間,以此得到較精確的輻射強度值。對于本輻射儀,用戶可以選擇不同的工作模式來進行測量,當輻射場較弱時,通常采用規定次數測量的方式,在輻射場較強時,應該選用定時測量的方式。因為,當輻射場較弱時,如果用規定次數測量的方式,會浪費很多時間來采集足夠的脈沖信號。當輻射場較強時,由于輻射粒子很多,產生脈沖的頻率就很高,規定次數的測量會加大測量誤差,當選用定時測量的方式時,由于時間的相對加長,所以記錄的粒子數就相對的增加,從而提高儀器的測量精度。通過調研國內外先進核輻射測量儀器的發展現狀,了解到了目前最新的核輻射總量測量技術一Time-To-Count理論及其應用情況。論證了該新技術的理論原理,根據此原理,結合高速處理器ARM7 LPC2132,對以G-計數管為探測元件的Time-To-Count輻射測量儀進行設計。論文以實驗的方法論證了Time-To-Count原理測量核輻射方法的科學性,該輻射儀的量程和精度均優于以前以脈沖計數為基礎理論的MCS-51核輻射測量儀。該輻射儀具有量程寬、精度高、易操作、用戶界面友好等優點。用戶可以定期的對儀器的標定,來減小由于電子元件的老化對低儀器性能參數造成的影響,通過Time-To-Count測量方法的使用,可以極大拓寬G-M計數管的量程。就儀器中使用的J33型G-M計數管而言,G-M計數管廠家參考線性測量范圍約為50 u R/h到5000 u R/h,而用了Time-To-Count測量方法后,結合高速微處理器ARM7 LPC2132,此核輻射測量儀的量程為20 u R/h至1R/h。在允許的誤差范圍內,核輻射儀的量程比以前基于MCS-51的輻射儀提高了近200倍,而且精度也比傳統的脈沖計數方法要高,測量結果的線性程度也比傳統的方法要好。G-M計數管的使用壽命被大大延長。 綜上所述,本文取得了如下成果:對國內外Time-To-Count方法的研究現狀進行分析,指出了Time-To-Count測量方法的基本原理,并對Time-T0-Count方法理論進行了分析,推導出了計數前時間和兩個相鄰輻射粒子時間間隔之間的關系,從數學的角度論證了Time-To-Count方法的科學性。詳細說明了基于ARM 7 LPC2132的Time-To-Count輻射測量儀的硬件設計、軟件編程的過程,通過高速微處理芯片LPC2132的使用,成功完成了對基于MCS-51單片機的Time-To-Count測量儀的改進。改進后的輻射儀器具有量程寬、精度高、易操作、用戶界面友好等特點。本論文根據實驗結果總結出了Time-To-Count技術中的幾點關鍵因素,如:處理器的頻率、計數前時間、雜質時間、采樣次數和測量時間等,重點分析了雜質時間的組成以及引入雜質時間的主要因素等,對國內核輻射測量儀的研究具有一定的指導意義。
標簽: TimeToCount ARM 輻射測量儀
上傳時間: 2013-06-24
上傳用戶:pinksun9
高級數據鏈路控制規程,是由ISO開發,面向比特的數據鏈路層協議,具有差錯檢測功能強大、高效和同步傳輸的等特點,是通信領域中應用最廣泛的協議之一。隨著大規模電路的集成度和工藝水平不斷提高,ARM處理器上的高級數據鏈路控制器外設,幾乎涵蓋了HDLC規程常用的大部分子集。利用ARM芯片對HDLC通信過程進行控制,將具有成本低廉、靈活性好、便于擴展為操作系統下的應用程序等優點。本文在這一背景下,提出了在ARM下實現鏈路層傳輸的方案,在方案中實現了基于HDLC協議子集的簡單協議。 本文以嵌入式的高速發展為背景,對基于ARM核微處理器的鏈路層通信規程進行研究,闡述了HDLC幀的結構、特點和工作原理,提出了在ARM芯片上實現HDLC規程的兩種方法,同時給出其設計方案、關鍵代碼和調試方法。其中,重點對無操作系統時中斷模式下,以及基于操作系統時ARM芯片上實現HDLC規程的方法進行了探討設計。
標簽: ARM 高級數據鏈路控制規程
上傳時間: 2013-08-04
上傳用戶:時代將軍
近年來,隨著控制系統規模的擴大和總線技術的發展,對數據采集和傳輸技術提出了更高的要求。目前,很多設備需要實現從單串口通信到多路串口通信的技術改進。同時,隨著以太網技術的發展和普及,這些設備的串行數據需要通過網絡進行傳輸,因而有必要尋求一種解決方案,以實現技術上的革新。 本文分別對串行通信和基于TCP/IP協議的以太網通信進行研究和分析,在此基礎上,設計一個嵌入式系統一基于APM處理器的多路串行通信與以太網通信系統,來實現F8-DCS系統中多路串口數據采集和以太網之間的數據傳輸。主要作了如下工作:首先,分析了當前串行通信的應用現狀和以太網技術的發展動態,通過比較傳統的多路串口通信系統的優缺點,設計出了一種采用CPID技術和CAN總線技術相結合的新型技術,并結合F8-DCS系統數據量大和實時性高的特點,對串行通訊幀同步的方法進行了詳細的研究。然后,根據課題的實際需求,對系統進行總體設計和功能模塊劃分,并詳細介紹了基于ARM7處理器的多路串口通信接口、以太網通信接口以及二者之間的數據傳輸接口的電路設計。在軟件設計上,對系統的啟動代碼、串行通信協議、串口驅動以及多串口與網口間雙向數據傳輸等進行了詳細的論述。最后,將上述技術應用于某大型火電廠主機F8-DCS系統I/O通訊網絡的測試與分析,達到了設計要求。
上傳時間: 2013-07-31
上傳用戶:aeiouetla
u盤 芯片 識別 工具 , 免費 下載
上傳時間: 2013-07-14
上傳用戶:gaorxchina
u盤電路原理圖.docu盤電路原理圖.docu盤電路原理圖.docu盤電路原理圖.docu盤電路原理圖.docu盤電路原理圖.docu盤電路原理圖.docu盤電路原理圖.doc
標簽: 電路原理圖
上傳時間: 2013-05-17
上傳用戶:qulele
本文首先在介紹多用戶檢測技術的原理以及系統模型的基礎上,對比分析了幾種多用戶檢測算法的性能,給出了算法選擇的依據。為了同時克服多址干擾和多徑干擾,給出了融合多用戶檢測與分集合并技術的接收機結構。 接著,針對WCDMA反向鏈路信道結構,介紹了擴頻使用的OVSF碼和擾碼,分析了擾碼的延時自相關特性和互相關特性,指出了存在多址干擾和多徑干擾的根源。在此基礎上,給出了解相關檢測器的數學公式推導和結構框圖,并仿真研究了用戶數、擴頻比、信道估計精度等參數對系統性能的影響。 常規的干擾抵消是基于chip級上的抵消,需要對用戶信號重構,因此具有較高的復雜度。在解相關檢測器的基礎上,衍生出符號級上的干擾抵消。通過仿真,給出了算法中涉及的干擾抑制控制權值、干擾抵消級數等參數的最佳取值,并進行了算法性能比較。仿真結果驗證了該算法的有效性。 最后,介紹了WCDMA系統移動臺解復用技術的硬件實現,在FPGA平臺上分別實現了與基站和安捷倫8960儀表的互聯互通。
上傳時間: 2013-07-29
上傳用戶:jiangxin1234
隨著電信數據傳輸對速率和帶寬的要求變得越來越迫切,原有建成的網絡是基于話音傳輸業務的網絡,已不能適應當前的需求.而建設新的寬帶網絡需要相當大的投資且建設工期長,無法滿足特定客戶對高速數據傳輸的近期需求.反向復用技術是把一個單一的高速數據流在發送端拆散并放在兩個或者多個低速數據鏈路上進行傳輸,在接收端再還原為高速數據流.該文提出一種基于FPGA的多路E1反向復用傳輸芯片的設計方案,使用四個E1構成高速數據的透明傳輸通道,支持E1線路間最大相對延遲64ms,通過鏈路容量調整機制,可以動態添加或刪除某條E1鏈路,實現靈活、高效的利用現有網絡實現視頻、數據等高速數據的傳輸,能夠節省帶寬資源,降低成本,滿足客戶的需求.系統分為發送和接收兩部分.發送電路實現四路E1的成幀操作,數據拆分采用線路循環與幀間插相結合的方法,A路插滿一幀(30時隙)后,轉入B路E1間插數據,依此類推,循環間插所有的數據.接收電路進行HDB3解碼,幀同步定位(子幀同步和復幀同步),線路延遲判斷,FIFO和SDRAM實現多路數據的對齊,最后按照約定的高速數據流的幀格式輸出數據.整個數字電路采用Verilog硬件描述語言設計,通過前仿真和后仿真的驗證.以30萬門的FPGA器件作為硬件實現,經過綜合和布線,特別是寫約束和增量布線手動調整電路的布局,降低關鍵路徑延時,最終滿足設計要求.
上傳時間: 2013-07-16
上傳用戶:asdkin