PRINCIPLE: The UVE algorithm detects and eliminates from a PLS model (including from 1 to A components) those variables that do not carry any relevant information to model Y. The criterion used to trace the un-informative variables is the reliability of the regression coefficients: c_j=mean(b_j)/std(b_j), obtained by jackknifing. The cutoff level, below which c_j is considered to be too small, indicating that the variable j should be removed, is estimated using a matrix of random variables.The predictive power of PLS models built on the retained variables only is evaluated over all 1-a dimensions =(yielding RMSECVnew).
function [U,V,num_it]=fcm(U0,X)
% MATLAB (Version 4.1) Source Code (Routine fcm was written by Richard J.
% Hathaway on June 21, 1994.) The fuzzification constant
% m = 2, and the stopping criterion for successive partitions is epsilon =??????.
%*******Modified 9/15/04 to have epsilon = 0.00001 and fix univariate bug********
% Purpose:The function fcm attempts to find a useful clustering of the
% objects represented by the object data in X using the initial partition in U0.