亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲(chóng)蟲(chóng)首頁(yè)| 資源下載| 資源專(zhuān)輯| 精品軟件
登錄| 注冊(cè)

計(jì)(jì)算機(jī)(jī)專(zhuān)業(yè)(yè)課程

  • 詞法分析程序

    詞法分析程序,可對(duì)以下的C源程序進(jìn)行分析:main() {int a[12] ,sum for(i=1 i<=12 i++) {for(j=1 j<=12 j++)scanf("%d",&a[i][j]) } for(i=12 i>=1 i--){ for(j=12 j>=1 j--){ if(i==j&&i+j==13)sum+=a[i][j] } } printf("%c",sum) }

    標(biāo)簽: 程序

    上傳時(shí)間: 2013-12-26

    上傳用戶(hù):skhlm

  • 算法介紹 矩陣求逆在程序中很常見(jiàn)

    算法介紹 矩陣求逆在程序中很常見(jiàn),主要應(yīng)用于求Billboard矩陣。按照定義的計(jì)算方法乘法運(yùn)算,嚴(yán)重影響了性能。在需要大量Billboard矩陣運(yùn)算時(shí),矩陣求逆的優(yōu)化能極大提高性能。這里要介紹的矩陣求逆算法稱(chēng)為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對(duì)于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開(kāi)始的右下角子陣中選取絕對(duì)值最大的元素,并記住次元素所在的行號(hào)和列號(hào),在通過(guò)行交換和列交換將它交換到主元素位置上。這一步稱(chēng)為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據(jù)在全選主元過(guò)程中所記錄的行、列交換的信息進(jìn)行恢復(fù),恢復(fù)的原則如下:在全選主元過(guò)程中,先交換的行(列)后進(jìn)行恢復(fù);原來(lái)的行(列)交換用列(行)交換來(lái)恢復(fù)。

    標(biāo)簽: 算法 矩陣求逆 程序

    上傳時(shí)間: 2015-04-09

    上傳用戶(hù):wang5829

  • 一個(gè)簡(jiǎn)單的類(lèi)似鋼琴的游戲

    一個(gè)簡(jiǎn)單的類(lèi)似鋼琴的游戲,能夠發(fā)出3個(gè)8度音, 低音:1~7; 中音:Q~U或q~u; 高音:A~J或a~j;

    標(biāo)簽: 鋼琴

    上傳時(shí)間: 2015-06-09

    上傳用戶(hù):784533221

  • Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權(quán)可正可負(fù) 2)算法描述: a)初始化:d

    Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權(quán)可正可負(fù) 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結(jié)束:dis即為所有點(diǎn)對(duì)的最短路徑矩陣 3)算法小結(jié):此算法簡(jiǎn)單有效,由于三重循環(huán)結(jié)構(gòu)緊湊,對(duì)于稠密圖,效率要高于執(zhí)行|V|次Dijkstra算法。時(shí)間復(fù)雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個(gè)判斷I,j是否有通路的矩陣。更簡(jiǎn)單的,我們可以把dis設(shè)成boolean類(lèi)型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來(lái)代替算法描述中的藍(lán)色部分,可以更直觀地得到I,j的連通情況。

    標(biāo)簽: Floyd-Warshall Shortest Pairs Paths

    上傳時(shí)間: 2013-12-01

    上傳用戶(hù):dyctj

  • 設(shè)計(jì)4個(gè)線程

    設(shè)計(jì)4個(gè)線程,其中兩個(gè)線程每次對(duì)j增加1,另外兩個(gè)線程對(duì)j每次減少1。寫(xiě)出程序。

    標(biāo)簽: 線程

    上傳時(shí)間: 2013-12-16

    上傳用戶(hù):TRIFCT

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2014-01-15

    上傳用戶(hù):hongmo

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2013-12-26

    上傳用戶(hù):dreamboy36

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2016-06-28

    上傳用戶(hù):change0329

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2014-09-03

    上傳用戶(hù):jjj0202

  • 動(dòng)態(tài)規(guī)劃的方程大家都知道

    動(dòng)態(tài)規(guī)劃的方程大家都知道,就是 f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j] 但是很多人會(huì)懷疑這道題的后效性而放棄動(dòng)規(guī)做法。 本來(lái)我還想做Dijkstra,后來(lái)變了沒(méi)二十行pascal就告訴我數(shù)組越界了……(dist:array[1..1000*1001 div 2]...) 無(wú)奈之余看了xj_kidb1的題解,剛開(kāi)始還覺(jué)得有問(wèn)題,后來(lái)豁然開(kāi)朗…… 反復(fù)動(dòng)規(guī)。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。 xj_kidb1的一個(gè)技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫(xiě)錯(cuò)了)

    標(biāo)簽: 動(dòng)態(tài)規(guī)劃 方程

    上傳時(shí)間: 2014-07-16

    上傳用戶(hù):libinxny

主站蜘蛛池模板: 黄陵县| 手机| 精河县| 波密县| 清新县| 安徽省| 永修县| 六安市| 桐梓县| 洮南市| 民勤县| 榕江县| 盘锦市| 木里| 故城县| 扶风县| 临桂县| 光泽县| 道孚县| 垦利县| 锡林浩特市| 伊金霍洛旗| 梁河县| 进贤县| 西充县| 肃宁县| 班戈县| 洪洞县| 漠河县| 彭州市| 商洛市| 竹北市| 镇远县| 韶山市| 泰兴市| 和顺县| 吴旗县| 酉阳| 宜城市| 景泰县| 工布江达县|