數字序列發生器是在數字系統中每個循環周期中,1和0數碼按一定的規則順序排列產生的序列信號電路。移位寄存器中的數據可以在移位脈沖作用下一次逐位右移或左移,數據既可以并行輸入、并行輸出,也可以串行輸入、串行輸出,還可以并行輸入、串行輸出,串行輸入、并行輸出,十分靈活,用途也很廣。本文給定序列循環長度為16,用戶自定義輸入序列,并可控制其順序與逆序輸出,利用4個74LS194移位寄存器移位輸出進行設計,完成狀態轉移,并將最終結果顯示出發光二極管上。
上傳時間: 2013-10-29
上傳用戶:fdfadfs
arduino 一些資料
上傳時間: 2014-12-25
上傳用戶:leixinzhuo
電機類設計
上傳時間: 2013-11-22
上傳用戶:jx_wwq
為了LED點陣顯示屏顯示的信息可以方便更新,提出了一種基于P89V51RD2單片機LED顯示屏的的設計方案,并完成了系統的軟硬件設計。該系統的硬件部分主要有單片機、移位寄存器、譯碼器以及數據存儲器等部分組成;軟件有兩部分:上位機部分,用VB編程來實現漢字字模的提取;下位機部分,由單片機控制移位寄存器以及譯碼器,來實現LED顯示。實際應用表明,該系統具有工作穩定、字符清晰、亮度適中等特點。
上傳時間: 2013-12-14
上傳用戶:邶刖
在單片機應用系統中,用戶必須時刻掌握系統的運行狀況及某些重要的過程信息,即用戶必須通過顯示系統獲取當前單片機的運行情況,因此顯示技術是單片機的重要組成部分。在實際應用中,為了節約端口資源和整機成本,通常采用單片機的通用串行口、8位移位寄存多閃爍現象越嚴重。本文介紹一種利用SPI器件優化單片機顯示系統的方法,該方法克服了一般顯示方法的以上兩個缺點,具有一定的實用性。器74LS164及LED數碼管構成串行動態顯示系統,該系統一定程度優化了顯示輸出通道對單片機I/O端口的占用數量,但它仍需大量(幾個LED就占用幾條I/O口線)的I/O端口作LED片選,同時由于74LS164本身未提供輸出允許端,單片機送來的串行數據從高位LED移向低位LED的過程中,會出現LED本應熄滅的筆劃發光而形成閃爍現象,且LED數越多閃爍現象越嚴重。本文介紹一種利用SPI器件優化單片機顯示系統的方法,該方法克服了一般顯示方法的以上兩個缺點,具有一定的實用性。
上傳時間: 2013-10-30
上傳用戶:asdstation
用EasyFPGA030開發套件,游戲電路是模擬乒乓球比賽,可供兩人游戲。甲乙各持一按鍵作為球拍,實驗板上一行16只發光二極管為乒乓球運動軌跡,用一只亮點代表乒乓球,它可以在此軌跡上左右移動。擊球位置應在左右端第2只發光二極管位置,若擊球鍵恰好當球到達擊球位置時按下,則發出短短的擊球聲,球即向相反方向移動,若按鍵偏早或偏晚,則擊球無效,無球聲發出,球將繼續向前運行至移位寄存器末端,并停止在該位置上不動也可以設計為亮點熄滅,此時判擊球者失敗,記分板上給勝球者加1分,再經過1s后,亮點自動按乒乓球比賽規則移到發球者的擊球位置上,發球者按動擊球按鍵,下一次比賽開始。
上傳時間: 2013-11-15
上傳用戶:z240529971
用EasyFPGA030開發套件,游戲電路是模擬乒乓球比賽,可供兩人游戲。甲乙各持一按鍵作為球拍,實驗板上一行16只發光二極管為乒乓球運動軌跡,用一只亮點代表乒乓球,它可以在此軌跡上左右移動。擊球位置應在左右端第2只發光二極管位置,若擊球鍵恰好當球到達擊球位置時按下,則發出短短的擊球聲,球即向相反方向移動,若按鍵偏早或偏晚,則擊球無效,無球聲發出,球將繼續向前運行至移位寄存器末端,并停止在該位置上不動也可以設計為亮點熄滅,此時判擊球者失敗,記分板上給勝球者加1分,再經過1s后,亮點自動按乒乓球比賽規則移到發球者的擊球位置上,發球者按動擊球按鍵,下一次比賽開始。
標簽: 模擬
上傳時間: 2013-11-12
上傳用戶:hopy
PC機之間串口通信的實現一、實驗目的 1.熟悉微機接口實驗裝置的結構和使用方法。 2.掌握通信接口芯片8251和8250的功能和使用方法。 3.學會串行通信程序的編制方法。 二、實驗內容與要求 1.基本要求主機接收開關量輸入的數據(二進制或十六進制),從鍵盤上按“傳輸”鍵(可自行定義),就將該數據通過8251A傳輸出去。終端接收后在顯示器上顯示數據。具體操作說明如下:(1)出現提示信息“start with R in the board!”,通過調整乒乓開關的狀態,設置8位數據;(2)在小鍵盤上按“R”鍵,系統將此時乒乓開關的狀態讀入計算機I中,并顯示出來,同時顯示經串行通訊后,計算機II接收到的數據;(3)完成后,系統提示“do you want to send another data? Y/N”,根據用戶需要,在鍵盤按下“Y”鍵,則重復步驟(1),進行另一數據的通訊;在鍵盤按除“Y”鍵外的任意鍵,將退出本程序。2.提高要求 能夠進行出錯處理,例如采用奇偶校驗,出錯重傳或者采用接收方回傳和發送方確認來保證發送和接收正確。 三、設計報告要求 1.設計目的和內容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單5.設計結果和體會(包括遇到的問題及解決的方法) 四、8251A通用串行輸入/輸出接口芯片由于CPU與接口之間按并行方式傳輸,接口與外設之間按串行方式傳輸,因此,在串行接口中,必須要有“接收移位寄存器”(串→并)和“發送移位寄存器”(并→串)。能夠完成上述“串←→并”轉換功能的電路,通常稱為“通用異步收發器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251。8251A異步工作方式:如果8251A編程為異步方式,在需要發送字符時,必須首先設置TXEN和CTS#為有效狀態,TXEN(Transmitter Enable)是允許發送信號,是命令寄存器中的一位;CTS#(Clear To Send)是由外設發來的對CPU請求發送信號的響應信號。然后就開始發送過程。在發送時,每當CPU送往發送緩沖器一個字符,發送器自動為這個字符加上1個起始位,并且按照編程要求加上奇/偶校驗位以及1個、1.5個或者2個停止位。串行數據以起始位開始,接著是最低有效數據位,最高有效位的后面是奇/偶校驗位,然后是停止位。按位發送的數據是以發送時鐘TXC的下降沿同步的,也就是說這些數據總是在發送時鐘TXC的下降沿從8251A發出。數據傳輸的波特率取決于編程時指定的波特率因子,為發送器時鐘頻率的1、1/16或1/64。當波特率指定為16時,數據傳輸的波特率就是發送器時鐘頻率的1/16。CPU通過數據總線將數據送到8251A的數據輸出緩沖寄存器以后,再傳輸到發送緩沖器,經移位寄存器移位,將并行數據變為串行數據,從TxD端送往外部設備。在8251A接收字符時,命令寄存器的接收允許位RxE(Receiver Enable)必須為1。8251A通過檢測RxD引腳上的低電平來準備接收字符,在沒有字符傳送時RxD端為高電平。8251A不斷地檢測RxD引腳,從RxD端上檢測到低電平以后,便認為是串行數據的起始位,并且啟動接收控制電路中的一個計數器來進行計數,計數器的頻率等于接收器時鐘頻率。計數器是作為接收器采樣定時,當計數到相當于半個數位的傳輸時間時再次對RxD端進行采樣,如果仍為低電平,則確認該數位是一個有效的起始位。若傳輸一個字符需要16個時鐘,那么就是要在計數8個時鐘后采樣到低電平。之后,8251A每隔一個數位的傳輸時間對RxD端采樣一次,依次確定串行數據位的值。串行數據位順序進入接收移位寄存器,通過校驗并除去停止位,變成并行數據以后通過內部數據總線送入接收緩沖器,此時發出有效狀態的RxRDY信號通知CPU,通知CPU8251A已經收到一個有效的數據。一個字符對應的數據可以是5~8位。如果一個字符對應的數據不到8位,8251A會在移位轉換成并行數據的時候,自動把他們的高位補成0。 五、系統總體設計方案根據系統設計的要求,對系統設計的總體方案進行論證分析如下:1.獲取8位開關量可使用實驗臺上的8255A可編程并行接口芯片,因為只要獲取8位數據量,只需使用基本輸入和8位數據線,所以將8255A工作在方式0,PA0-PA7接實驗臺上的8位開關量。2.當使用串口進行數據傳送時,雖然同步通信速度遠遠高于異步通信,可達500kbit/s,但由于其需要有一個時鐘來實現發送端和接收端之間的同步,硬件電路復雜,通常計算機之間的通信只采用異步通信。3.由于8251A本身沒有時鐘,需要外部提供,所以本設計中使用實驗臺上的8253芯片的計數器2來實現。4:顯示和鍵盤輸入均使用DOS功能調用來實現。設計思路框圖,如下圖所示: 六、硬件設計硬件電路主要分為8位開關量數據獲取電路,串行通信數據發送電路,串行通信數據接收電路三個部分。1.8位開關量數據獲取電路該電路主要是利用8255并行接口讀取8位乒乓開關的數據。此次設計在獲取8位開關數據量時采用8255令其工作在方式0,A口輸入8位數據,CS#接實驗臺上CS1口,對應端口為280H-283H,PA0-PA7接8個開關。2.串行通信電路串行通信電路本設計中8253主要為8251充當頻率發生器,接線如下圖所示。
上傳時間: 2013-12-19
上傳用戶:小火車啦啦啦
第一章 虛擬儀器及labview入門 1.1 虛擬儀器概述 1.2 labview是什么? 1.3 labview的運行機制 1.3.1 labview應用程序的構成 1.3.2 labview的操作模板 1.4 labview的初步操作 1.4.1 創建VI和調用子VI 1.4.2 程序調試技術 1.4.3 子VI的建立 1.5 圖表(Chart)入門 第二章 程序結構 2.1 循環結構 2.1.1 While 循環 2.1.2 移位寄存器 2.1.3 For循環 2.2 分支結構:Case 2.3 順序結構和公式節點 2.3.1 順序結構 2.3.2 公式節點 第三章 數據類型:數組、簇和波形(Waveform) 3.1 數組和簇 3.2 數組的創建及自動索引 3.2.1 創建數組 3.2.2 數組控制對象、常數對象和顯示對象 3.2.3 自動索引 3.3 數組功能函數 3.4 什么是多態化(Polymorphism)? 3.5 簇 3.5.1 創建簇控制和顯示 3.5.2 使用簇與子VI傳遞數據 3.5.3 用名稱捆綁與分解簇 3.5.4 數組和簇的互換 3.6 波形(Waveform)類型 第四章 圖形顯示 4.1 概述 4.2 Graph控件 4.3 Chart的獨有控件 4.4 XY圖形控件(XY Graph) 4.5 強度圖形控件(Intensity Graph) 4.6 數字波形圖控件(Digital Waveform Graph) 4.7 3D圖形顯示控件(3D Graph) 第五章 字符串和文件I/ 5.1 字符串 5.2 文件的輸入/輸出(I/O) 5.2.1 文件 I/O 功能函數 5.2.2 將數據寫入電子表格文 5.3 數據記錄文件(datalog file) 第六章 數據采集 6.1 概述 6.1.1 采樣定理與抗混疊濾波器 6.1.2 數據采集系統的構成 6.1.3 模入信號類型與連接方式 6.1.4 信號調理 6.1.5 數據采集問題的復雜程度評估 6.2 緩沖與觸發 6.2.1 緩沖(Buffers) 6.2.2 觸發(Triggering) 6.3 模擬I/O(Analog I/O) 6.3.1 基本概念 6.3.2 簡單 Analog I/O 6.3.3 中級Analog I/O 6.4 數字I/O(Digital I/O) 6.5 采樣注意事項 6.5.1 采樣頻率的選擇 6.5.2 6.5.3 多任務環境 6.6 附:PCI-MIO-16E-4數據采集卡簡介 第七章 信號分析與處理 7.1 概述 7.2 信號的產生 7.3 標準頻率 7.4 數字信號處理 7.4.1 FFT變換 7.4.2 窗函數 7.4.3 頻譜分析 7.4.4 數字濾波 7.4.5 曲線擬合 第八章 labview程序設計技巧 8.1 局部變量和全局變量 8.2 屬性節點 8.3 VI選項設置 第九章 測量專題 9.1 概述 9.1.1 模入信號類型與連接方式 9.1.2 信號調理 9.2 電壓測量 9.3 頻率測量 9.4 相位測量 9.5 功率測量 9.6 阻抗測量 9.7 示波器 9.8 波形記錄與回放 9.9 元件伏安特性的自動測試 9.10 掃頻儀 9.11 函數發生器 9.12 實驗數據處理 9.13 頻域分析 9.14 時域分析 第十章 網絡與通訊 第十一章 儀器控制
上傳時間: 2013-11-06
上傳用戶:15070202241
摘要:介紹用一片GAL16V8實現的模≤2n可編程計數器。它是基于“最大長度移位寄存器式計數器”的原理設計而成的.電路簡單可靠.同時介紹一種由它組成的實用電路——由GAL實現時、分、秒計時的數字鐘電路。 關鍵詞:GAL 最大長度移位寄存器式計數器
上傳時間: 2013-11-12
上傳用戶:comua