bp神經網絡算法是解決最優化問題的先進算法之一,本論文討論了神經網絡中使用最為廣泛的前饋神經網絡。其網絡權值學習算法中影響最大的就是誤差反向傳播算法(back-propagation簡稱BP算法)。BP算法存在局部極小點,收斂速度慢等缺點。基于優化理論的Levenberg-Marquardt算法忽略了二階項。該文討論當誤差不為零或者不為線性函數即二階項S(W)不能忽略時的Hesse矩陣的近似計算,進而訓練網絡。
上傳時間: 2015-12-31
上傳用戶:wendy15
Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
數據結構 1、算法思路: 哈夫曼樹算法:a)根據給定的n個權值{W1,W2… ,Wn }構成 n棵二叉樹的集合F={T1,T2…,T n },其中每棵二叉樹T中只有一個帶權為W i的根結點,其左右子樹均空;b)在F中選取兩棵根結點的權值最小的樹作為左右子樹構造一棵新的二叉樹,且置新的二叉樹的根結點的權值為其左、右子樹上結點的權值之和;c)F中刪除這兩棵樹,同時將新得到的二叉樹加入F中; d)重復b)和c),直到F只含一棵樹為止。
上傳時間: 2016-03-05
上傳用戶:lacsx
設計一FIR低通濾波器 0=<|w|<=0.25Pi,輸入n代表FIR濾波器的長度,輸出H(ejw)幅度值,N代表輸出數,Hbs[N]存放H(ejw)的幅度值,h[n]存放H[z]的系數,算法采用Hamming窗函數
上傳時間: 2016-06-28
上傳用戶:a6697238
若不希望用與估計輸入信號矢量有關的相關矩陣來加快LMS算法的收斂速度,那么可用變步長方法來縮短其自適應收斂過程,其中一個主要的方法是歸一化LMS算法(NLMS算法),變步長 的更新公式可寫成 W(n+1)=w(n)+ e(n)x(n) =w(n)+ (3.1) 式中, = e(n)x(n)表示濾波權矢量迭代更新的調整量。為了達到快速收斂的目的,必須合適的選擇變步長 的值,一個可能策略是盡可能多地減少瞬時平方誤差,即用瞬時平方誤差作為均方誤差的MSE簡單估計,這也是LMS算法的基本思想。
上傳時間: 2016-07-07
上傳用戶:changeboy
Digital Signature Algorithm (DSA)是Schnorr和ElGamal簽名算法的變種,被美國NIST作為DSS(DigitalSignature Standard)。算法中應用了下述參數: p:L bits長的素數。L是64的倍數,范圍是512到1024; q:p - 1的160bits的素因子; g:g = h^((p-1)/q) mod p,h滿足h < p - 1, h^((p-1)/q) mod p > 1; x:x < q,x為私鑰 ; y:y = g^x mod p ,( p, q, g, y )為公鑰; H( x ):One-Way Hash函數。DSS中選用SHA( Secure Hash Algorithm )。 p, q, g可由一組用戶共享,但在實際應用中,使用公共模數可能會帶來一定的威脅。簽名及驗證協議如下: 1. P產生隨機數k,k < q; 2. P計算 r = ( g^k mod p ) mod q s = ( k^(-1) (H(m) + xr)) mod q 簽名結果是( m, r, s )。 3. 驗證時計算 w = s^(-1)mod q u1 = ( H( m ) * w ) mod q u2 = ( r * w ) mod q v = (( g^u1 * y^u2 ) mod p ) mod q 若v = r,則認為簽名有效。 DSA是基于整數有限域離散對數難題的,其安全性與RSA相比差不多。DSA的一個重要特點是兩個素數公開,這樣,當使用別人的p和q時,即使不知道私鑰,你也能確認它們是否是隨機產生的,還是作了手腳。RSA算法卻作不到。
標簽: Algorithm Signature Digital Schnorr
上傳時間: 2014-01-01
上傳用戶:qq521
基于非負矩陣分解(NMF)的人臉特征提取算法,NMF基本思想是找到一個線性子空間W,使的構成子空間的基本圖像的像素點都是正值,而且人臉圖像在子空間上的投影系數也是正數
上傳時間: 2014-01-12
上傳用戶:moerwang
批處理感知器算法的代碼matlab w1=[1,0.1,1.1;1,6.8,7.1;1,-3.5,-4.1;1,2.0,2.7;1,4.1,2.8;1,3.1,5.0;1,-0.8,-1.3; 1,0.9,1.2;1,5.0,6.4;1,3.9,4.0]; w2=[1,7.1,4.2;1,-1.4,-4.3;1,4.5,0.0;1,6.3,1.6;1,4.2,1.9;1,1.4,-3.2;1,2.4,-4.0; 1,2.5,-6.1;1,8.4,3.7;1,4.1,-2.2]; w3=[1,-3.0,-2.9;1,0.5,8.7;1,2.9,2.1;1,-0.1,5.2;1,-4.0,2.2;1,-1.3,3.7;1,-3.4,6.2; 1,-4.1,3.4;1,-5.1,1.6;1,1.9,5.1]; figure; plot(w3(:,2),w3(:,3),'ro'); hold on; plot(w2(:,2),w2(:,3),'b+'); W=[w2;-w3];%增廣樣本規范化 a=[0,0,0]; k=0;%記錄步數 n=1; y=zeros(size(W,2),1);%記錄錯分的樣本 while any(y<=0) k=k+1; y=a*transpose(W);%記錄錯分的樣本 a=a+sum(W(find(y<=0),:));%更新a if k >= 250 break end end if k<250 disp(['a為:',num2str(a)]) disp(['k為:',num2str(k)]) else disp(['在250步以內沒有收斂,終止']) end %判決面:x2=-a2*x1/a3-a1/a3 xmin=min(min(w1(:,2)),min(w2(:,2))); xmax=max(max(w1(:,2)),max(w2(:,2))); x=xmin-1:xmax+1;%(xmax-xmin): y=-a(2)*x/a(3)-a(1)/a(3); plot(x,y)
上傳時間: 2016-11-07
上傳用戶:a1241314660
matlab數學建模算法全收錄 超清書簽版
上傳時間: 2013-05-15
上傳用戶:eeworm
視頻圖像格式轉換芯片的算法研究
上傳時間: 2013-05-25
上傳用戶:eeworm