Modbus尋址Modbus地址通常是包含數據類型和偏移量的5 個或6 個字符值。第一個或前兩個字符決定數據類型,最后的四個字符是符合數據類型的一個適當的值。Modbus主設備指令能將地址映射至正確的功能,以便發送到從站。1 Modbus主站尋址Modbus主設備指令支持下列Modbus地址:(1) 00001 至09999是離散輸出(線圈)。(2) 10001 至19999是離散輸入(觸點)。(3) 30001 至39999是輸入寄存器(通常是模擬量輸入)。(4) 40001 至49999是保持寄存器。所有Modbus地址均以1 為基位,表示第一個數據值從地址1 開始。有效地址范圍將取決于從站。不同的從站將支持不同的數據類型和地址范圍。2 Modbus從站尋址Modbus從站指令支持以下地址:(1) 000001 至000128 是實際輸出,對應于Q0.0 ——Q15.7 。(2) 010001 至010128 是實際輸入,對應于I 0.0 ——丨15.7 。(3) 030001 至030032 是模擬輸入寄存器,對應于AIW0 至AIW2。(4) 040001 至04XXXX是保持寄存器,對應于V 區。Modbus從站協議允許您對Modbus主站可訪問的輸入、輸出、模擬量輸入和保持寄存器( V 區)的數量進行限定。MBUS_INIT指令的參數MaxlQ 指定Modbus主站允許訪問的實際輸入或輸出( I 或Q) 的最大數量。MBUS_INIT指令的MaxAl 參數指定Modbus主站允許訪問的輸入寄存器( A 丨W)的最大數量。MBUS_INIT指令的MaxHold 參數指定Modbus主站允許訪問的保持寄存器(V 存儲區字)的最大數
上傳時間: 2022-06-21
上傳用戶:
系統原理說明:結構上,該逆變器采用模塊化的設計思想,分別為升壓模塊、逆變模塊、低通濾波器等。通過升壓模塊M1進行DC/DC變化,將輸入110VDC電壓轉換350VDC,然后通過逆變模塊M2進行DC/AC變換,輸出三相200VAC的SPWM波,最后經過輸出濾波器濾波后輸出三相200V正弦波。逆變器僅在緊急情況下使用,系統上采用了簡潔、可靠的設計思想,對外接口只有電壓110V輸入一組,3相交流輸出一組,啟動信號一組和故障指示一組,見圖2:110V+為110V電源輸入正極;110VG為110V電源輸入負極;START1與START2為緊急逆變器啟動控制;FAULT1與FAULT2為緊急逆變器故障報警信號端口;U、V、W為逆變器的3相200V輸出端。逆變器長期處于冷待機狀態,當接收到啟動信號之后,緊急逆變器開始工作。當空調主電源無法為空調提供電源的時候,地鐵車輛內的控制器將吸合內部的無源觸頭作為緊急逆變器的啟動信號(即圖2中START1與START2閉合導通時,緊急逆變器啟動)。緊急逆變器啟動信號回路形成后,如果輸入電壓正常、逆變器無故障時,緊急逆變器將在20s內完成啟動并開始穩定工作。緊急逆變器正常工作時,故障報警觸點處于吸合狀態;緊急逆變器出現故障時,三相輸出停止,故障報警觸點斷開。(即:正常時,FAULT1與FAULT2閉合導通;故障時,FAULT1與FAULT2開路。)
上傳時間: 2022-07-01
上傳用戶:
45 W隔離式反激式電源(90 VAC - 265 VAC輸入; 24 V,1.88 A輸出),適用于使用InnoSwitch3-CP(INN3268-H221)以及CV,CC和CP輸出選項的智能揚聲器和管狀電機
標簽: 智能揚聲器 管狀電機 輸出隔離式反激式電源
上傳時間: 2022-07-11
上傳用戶:
eeworm.com VIP專區 單片機源碼系列 68資源包含以下內容:1. AN010101基于LM3S2000系列CAN控制器的驅動庫.pdf2. 定壓輸入6000VDC隔離非穩壓單路輸出.pdf3. LM3S系列單片機擴展按鍵及數碼管及RTC應用筆記.pdf4. Stellaris系列微控制器的ADC過采樣技術.pdf5. 基于SPWM技術的逆變電源.pdf6. ADC Oversampling Techniques fo.pdf7. Adding 32 KB of Serial SRAM to.pdf8. Using the Stellaris Microcontr.pdf9. Stellaris系列微控制器的時鐘.pdf10. CAN通信實驗報文對象的FIFO緩沖器應用.pdf11. Clocking Options for Stellaris.pdf12. CAN節點設計基于32位Luminary ARM.pdf13. LM3S系列單片機休眠與深度休眠應用筆記.pdf14. CAN總線現場總線應用方案RS-485升級到CAN.pdf15. LM3S系列微控制器UART應用筆記.pdf16. LM3S316逆變電源應用方案.pdf17. Luminary軟硬件平臺快速搭建.pdf18. Luminary復位電路匯總.pdf19. 3-V TO 5.5-V MULTICHANNEL RS-2.pdf20. LPC3220與LPC3250在引腳上的區別.pdf21. DUAL DIGITAL ISOLATORS.pdf22. 基于Fusion的原理講解教程.zip23. AN070231 I O擴展器選型指南.pdf24. EPCS-6100工控機主板.pdf25. 模擬開小車的設計基于EasyFPGA030.pdf26. PCA954X家庭的I C SMBus多路復用器與開關.pdf27. EPCM-2643 EPCM2000系列數據采集工控主板.pdf28. Using the P82B715 I2C extender.pdf29. AN255-02 IC SMBus REPEATERS HU.pdf30. 51系列單片機設計實例下載.rar31. EPC-6000 PC/104工控機主板.pdf32. I2C總線.pdf33. 波形發生器設計.pdf34. EPC266x兼容Anywhere軟件開發平臺EPC2000.pdf35. Using the P82B96 for bus inter.pdf36. 簡易頻率計設計.pdf37. PROFIBUS嵌入式模塊.pdf38. 采用雙核處理器OMAP3530的嵌入式工控機主板.pdf39. 串口接收顯示設計.pdf40. PROFIBUS-DP從站通訊模塊.pdf41. EPCS-6960工控機主板.pdf42. 模擬乒乓球比賽設計.pdf43. 16-bit IC and SMBus I/O Port w.pdf44. EPCS-500工控機主板.pdf45. I2C總線接口模塊設計.pdf46. CAT9554A IO 口擴展芯片.pdf47. CAT9534 I2C IO 擴展芯片.pdf48. 直流電機控制電路設計.pdf49. I2C總線擴展器.pdf50. CAT660簡易負電壓方案.pdf51. 8-bit IC and SMBus IO Port wit.pdf52. 液晶驅動安裝.pdf53. 5G14433和MCS 51單片機接口電路的調試過程.pdf54. 視頻字符疊加解決方案.pdf55. 單片機系統中的率表算法.pdf56. TFT控制器解決方案.pdf57. 單片機系統的低功耗設計策略.pdf58. PCI控制器解決方案.pdf59. 51單片機實訓指南.doc60. 多串口擴展解決方案.pdf61. 用單片機制作通用型電視遙控器.pdf62. IDE控制器解決方案.pdf63. 32位MCU開發全攻略 (含上冊、下冊).rar64. 手持式設備解決方案.pdf65. 基于ADuC812單片機的暖表計量系統.pdf66. 攝像頭數據采集解決方案.pdf67. 基于單片機的陶瓷窯多點溫度檢測系統.pdf68. NXP半導體控制器.rar69. S51下載線的制作-單片機實用技術探討.pdf70. 自動控制升降旗系統的設計.pdf71. MDT單片機反匯編器(mdt writer)V2.43.rar72. MSP430系列單片機C語言程序設計與開發.rar73. mcs-51(c51)智能反編譯器.rar74. MSP430系列超低功耗16位單片機原理與應用.rar75. MCU(單片機)對可控硅的控制.pdf76. 51單片機反匯編軟件.rar77. 基于M CORE微控制器的嵌入式系統.rar78. 智能直流高頻開關電源系統微機監控模塊的研制.pdf79. keil c51v805 完全漢化破解版.zip80. EZ-USB FX系列單片機USB外圍設備設計與應用.rar81. 以PLD器件實現自動掃描去抖的編碼鍵盤設計.pdf82. 單片機原理及應用實驗報告.pdf83. 單片機c語言輕松入門.pdf84. 單片機應用編程技巧百問.pdf85. 8051單片機系統擴展與接口技術.rar86. 單片機語言C51應用實戰集錦 (經典推薦).rar87. MSP430F413實現的智能遙控器設計.pdf88. 基于PIC單片機的脈沖電源.pdf89. 基于8086 CPU 的單芯片計算機系統的設計.pdf90. Lattice下載電纜導致單板無法上電案例及解決方案.pdf91. 單片機C語言應用程序設計.rar92. 基于單DSP的VoIP模擬電話適配器研究與實現.pdf93. SystemView仿真軟件的應用.pdf94. MSP430系列flash型超低功耗16位單片機.rar95. 看門狗定時器的工作原理.pdf96. 世界著名單片機廠家簡介.pdf97. 單片機的數學基礎.pdf98. 以單片微機87C196MC為核心的電梯門機變頻調速控制系統.pdf99. 基于單片機PWM控制逆變電源的設計.pdf100. 單片機鍵盤掃描之狀態機實現.pdf
上傳時間: 2013-04-15
上傳用戶:eeworm
隨著現代工業的迅猛發展,對作為工業裝備重要驅動源之一的伺服系統的性能提出了越來越高的要求。永磁同步電機( PMSM)作為交流伺服系統的執行元件具有結構簡單、功率密度高、效率高、易于散熱及維護保養等優點,正得到越來越廣泛地應用。要構建高性能的伺服系統,好的伺服控制系統則必不可缺,本論文主要圍繞高性能的永磁同步電流伺服控制系統這一主題展開研究。 根據永磁同步電機的動態dq數學模型,從實現高性能的轉矩控制出發,對永磁同步電機的矢量控制技術和直接轉矩控制技術等控制策略進行了比較分析。針對本伺服系統永磁同步電機的轉子結構特點,選用了具有線性控制轉矩特性,能獲得比較平穩轉矩輸出的基于轉子磁場定向的id=0的矢量控制策略,同時還介紹了該策略的重要組成部分空間矢量脈寬調制技術(SVPWM),并在MATLAB仿真平臺對所選控制方案進行了仿真研究。 對控制系統的軟件部分進行了設計,詳細分析了針對16位定點DSP控制器TMS320LF2407A的程序設計特點,建立了電機的標幺值模型,解決了變量的定標問題。并介紹了電機控制程序的總體結構以及相關模塊的詳細設計過程。 為實現高性能的伺服控制系統,使伺服系統輸出平滑的轉矩,本文還對電壓型PWM逆變器“死區效應”引入的轉矩脈動進行了分析,分析表明了在永磁同步電機矢量控制系統中,由“死區效應”造成的誤差電壓矢量與永磁同步電機轉子位置之間的關系,并應用一種實用的死區補償技術減小了轉矩脈動,提高了系統的性能。 最后在伺服系統實驗平臺上對伺服控制系統進行綜合調試,并在此基礎上做了大量的實驗研究,實驗結果表明系統性能可靠且擁有優良的調速性能。
上傳時間: 2013-06-18
上傳用戶:scorpion
作為新一代直流輸電技術,基于電壓源換流器的高壓直流輸電憑借其獨特的技術優點取得了飛速的發展,并已在新能源發電系統聯網、電網非同步互聯、無源系統供電、無功補償等場合得到實際工程應用。在我國,VSC-HVDC的研究尚處于起步階段。本論文著重開展了VSC-HVDC技術的數學建模和控制策略的研究。論文的主要工作和取得的創新性成果如下: 1.建立了系統標么值模型,分析了VSC-HVDC的運行原理和穩態功率特性。明確了系統主電路參數對運行特性的影響,在此基礎上提出了一種功率定義下的換流電抗、直流電壓和直流電容以及頻域下的交流濾波器參數設計方法。 2.設計了一種基于無差拍控制的VSC-HVDC直接電流離散控制器。針對控制系統存在的VSC電壓輸出能力限制、PI控制器積分飽和現象和離散采樣時間延遲問題,提出了相應的解決方法,推導了其電流內環控制器與功率外環離散控制器的設計原則。 3.推導了換流站網側與VSC交流側功率節點以及換流電抗與損耗電阻上的瞬時功率方程,在此基礎上提出了一種換流站網側功率節點控制并補償換流電抗與損耗電阻消耗二倍頻功率的不平衡控制策略,設計了該控制策略下的雙序矢量控制器模型。同時針對傳統dq軟件鎖相環在電壓不平衡時鎖相速度慢的缺點,提出了一種基于前置相序分解的頻率自適應dq鎖相環,提高了不平衡控制算法的動態性能與穩態特性。 4.對VSC閥在交流電網低電壓故障下的過流現象進行分析并提出了一種考慮正負序分量影響的指令電流限制器,保證了故障限流效果。分析比較了VSC閥電流裕度穿越法和指令電流限制器穿越法的特性,在此基礎上提出一種結合正負序指令電流限制器與控制模式切換的交流電網低電壓穿越控制方法,從而解決交流電網低電壓故障時系統穩定與VSC過流問題。 5.在分析現有VSC-HVDC拓撲的基礎上,從降低電力電子器件直接串聯數目、器件開關頻率和簡化主電路拓撲結構三個方面出發,將傳統直流輸電中常用的變壓器隔離式多模塊結構引入VSC-HVDC系統,并針對該模塊級聯式拓撲提出一種系統協調控制與模塊獨立運行相結合的新型控制策略。針對該拓撲下送端站存在的各模塊直流側電容電壓均衡問題,提出了一種基于有功分量調節的直流側電壓控制方法。
上傳時間: 2013-06-03
上傳用戶:lw4463301
隨著國內交流伺服電機等硬件技術逐步成熟,高運算能力的控制芯片與電機控制技術相結合,具有高效、節能和可移植性好等特點,這樣使得交流伺服系統成為現代電機伺服驅動系統的一個發展趨勢。 本文主要是基于MCU研究和設計了交流永磁電機位置伺服控制系統。針對三相永磁同步電機的物理方程,通過坐標轉換,在d-q旋轉坐標系下建立轉矩方程,采用Id=0的矢量控制策略,建立一套完整的全數字交流位置伺服控制系統。 硬件方面,采用的是瑞薩公司專用電機控制Tiny系列芯片M30262F8作為控制芯片,并由三菱公司的第三代IPM模塊PS21564實現功率驅動,簡化了系統電路,縮小了系統的體積,提高了系統的可靠性。由交流電流傳感器檢測三相定子繞組電流;由增量式磁性編碼器檢測永磁轉子位置,并設計一種比較快速的轉子初始檢測方法。 軟件方面,采用結構化語言C和單片機M16C匯編語言混編,實現了單片機初始化、三環控制、電流跟隨型PWM控制,提高編寫代碼的效率,同時保證系統的實時控制性能;由軟件方式實現經典PID控制和簡單模糊控制相結合構成“串聯校正”閉環控制系統,提高了系統的快速性和抗干擾能力。此外,本文對控制策略進行了研究,闡述了模糊PID控制策略;還介紹了SPWM、SVPWM和跟隨型PWM調制。 實驗結果表明,本文所設計的伺服控制系統能實現電機的啟動,調速和定位等,并能達到系統的性能指標。
上傳時間: 2013-05-19
上傳用戶:327000306
高速、高精度已經成為伺服驅動系統的發展趨勢,而位置檢測環節是決定伺服系統高速、高精度性能的關鍵環節之一。光電編碼器作為伺服驅動系統中常用的檢測裝置,根據結構和原理的不同分為增量式和絕對式。本文從原理上對增量式光電編碼器和絕對式光電編碼器做了深入的分析,通過對比它們的特性,得出了絕對式光電編碼器更適合高速、高精度伺服驅動系統的結論。 絕對式光電編碼器精度高、位數多的特點決定其通信方式只能采取串行傳輸方式,且由相應的通信協議控制信息的傳輸。本文首先針對編碼器主要生產廠商日本多摩川公司的絕對式光電編碼器,深入研究了通信協議相關的硬件電路、數據幀格式、時序等。隨后介紹了新興的電子器件FPGA及其開發語言硬件描述語言Verilog HDL,并對基于FPGA的絕對式編碼器通信接口電路做了可行性的分析。在此基礎上,采用自頂向下的設計方法,將整個接口電路劃分成發送模塊、接收模塊、序列控制模塊等多個模塊,各個模塊采用Verilog語言進行描述設計編碼器接口電路。最終的設計在相關硬件電路上實現。最后,通過在TMS320F2812伺服控制平臺上編寫的硬件驅動程序驗證了整個設計的各項功能,達到了設計的要求。
上傳時間: 2013-07-11
上傳用戶:snowkiss2014
這篇論文在系統分析國內外雷達伺服控制系統研究現狀的基礎上,選定以ARM為內核的基于ARM+FPGA的雷達伺服控制器為研究對象。 首先,根據雷達伺服控制系統功能要求與性能指標,進行系統的硬件設計:選擇基于ARM920T的S3C2410和Altera公司的FPGA芯片EP1C12Q240作為主控芯片,ARM與FPGA的連接形式采用中斷+存儲器的形式;將ARM與FPGA上多余的引腳引出作為將來升級的需要;還畫出ARM+FPGA的雷達伺服控制器的系統圖并制作了PCB板。 其次,選用PID對伺服系統進行控制,模糊神經網絡綜合了模糊控制和神經網絡的優點,并利用模糊神經網絡算法對PID參數進行在線調整。用Matlab7.1進行仿真,其結果表明:該控制算法對系統具有良好的控制效果,性能較常規PID得到較大改善。 最后,根據FPGA在伺服系統主要任務,用VHDL語言和原理圖在FPGA芯片中分別編制實現DAC0832接口控制功能、光電編碼器與脈沖發生電路的程序代碼;并在Quartus II6.0環境下通過仿真,且得到仿真的波形符合系統功能要求。采用C語言編寫在ARM中實現模糊神經網絡PID控制算法的代碼,通過CodeWarrior for ARM的編譯無誤后,生成可執行文件.axf,,調用AXD進行在線仿真調試。仿真結果表明:模糊神經網絡PID算法對伺服系統能夠進行有效控制。 結果表明:ARM作為伺服控制器的內核,其性價比與集成度高:用FPGA芯片實現接口電路使伺服控制器的可靠性高、速度快、可配置及連接方式靈活。因此采用基于ARM+FPGA的雷達伺服控制器,提高了系統的開放性、實時性、可靠性,降低了系統功耗,具有重要的應用價值。
上傳時間: 2013-06-30
上傳用戶:Ruzzcoy
目前,在伺服控制系統中,通常采用三相電壓型逆變器來驅動伺服電機。橋式電路中為避免同一橋臂開關器件的直通現象, 必須插入死區時間。死區時間和開關器件的非理想特性往往會造成輸出電壓、電流的畸變,從而造成電機轉矩的脈動,影響系統工作性能。因此,必須對電壓型逆變器中的死區效應進行補償。
上傳時間: 2013-04-24
上傳用戶:萌萌噠小森森