摘要: 智能機器人仿真系統,由于智能機器人受到自身多傳感器信息融合和控制多樣性等因素的影響,仿真系統設計主要都 是以數學建模的形式化仿真為主,無法實現數學建模與場景實現協調仿真。為此,首先分析兩輪移動機器人數學運動模型, 然后設計與機器人控制系統相關的傳感器數據采集分析、機器人智能自動控制和人工控制等模塊,以實現機器人控制的真 實場景。仿真系統利用 LabVIEW 設計控制界面,并結合 Robotics 工具包的建模、計算和控制功能。仿真結果表明設計的平 臺更適合教學和實驗室研究,并可為實際的物理過程提供數據參考和決策建議。 關鍵詞: 機器人; 虛擬; 系統仿真 中圖分類號: TP242 文獻標識碼: B1 引言 隨著測控技術的發展,虛擬儀器技術已成為工業控制和 自動化測試等領域的新生力量[1]。而機器人作為一種新型 的生產工具,應用范圍已經越來越廣泛,幾乎滲透到各個領 域,是一項多學科理論與技術集成的機電一體化技術。目前 機器人仿真系統主要集中在復雜的機器人數學模型構建與 形式化仿真,無法實現分析機器人運動控制的靜態和動態特 性,更加無法實現控制的真實場景[2]。為了改善專業控制軟 件在硬件開發周期較長的缺點,本文擬建立一個基于通用軟 件的實時仿真和控制平臺,以更適合教學和實驗室研究。本 文以通用仿真軟件 LabVIEW 和 Robotics [3]為實時仿真與控 制平臺,采用 LabVIEW 搭建控制界面,利用 Robotics 在后臺 進行系統模型和優化控制算法計算,使其完成機器人控制系 統應有的靜態和動態性能分析,不同環境下傳感器變化模擬 顯示以及目標路徑形成等功能。 2 系統構成 仿真系統的構成主要包括了仿真界面、主控制界面、障 礙檢測、智能控制和人工控制模塊。其中主要對人工控制和 智能控制進行程序設計。仿真運行時,障礙檢測一直存在, 主要是為了在智能控制模式下的智能決策提供原始數據。 在人工控制模式下,障礙檢測依然存在,只不過對機器人行 動不產生影響,目的是把環境信息直觀
標簽: 智能機器人
上傳時間: 2022-03-11
上傳用戶:
近些年來,云計算與移動云計算迅速發展,隨之而來出現的問題是由于智能終端的數量和處理器計算能力能力的增加,越來越多的計算密集型應用應用被卸載到云端,這樣就給核心網絡造成很大的負載,從而不能滿足那些對延遲敏感的應用,所以移動邊緣計算就因此產生。它通過將計算、存儲等資源部署在網絡的邊緣,能快速地處理任務并傳輸。但是由于用戶終端的移動性,需要考慮的一個很重要的問題就是當服務厥量受到位置影響時應當采取什么措施。合理的計算切換能夠很好地解決這個問題。在移動邊緣計算中,什么時候進行計算切換以及切換到哪里是切換問題的關鍵。本文研究了計算切換的具體過程、影響計算切換的因素及管理體系,提出了計算切換的管理框架。在考慮任務完成時間、移動終端能耗和任務完成成本這些因素影響的基礎上并根據切換管理的框架和具體的判決準則,提出了簡單加權法、熵值法和基于理想解排序的這三種多屬性決策計算切換筧法。最后在實驗部分對這三種多屬性決策計算切換算法進行仿真實驗,在根據實驗結果對三種算法的性能進行分析,然后再研究計算量與數據量變化對算法性能的影響。實驗結果表明:采用多屬性切換決策的方法要優于不切換和總是發生切換的決策,并且在多屬性決策的方法中,班想解排序的方法要優于簡單加權法和值法,并且任務的完成時間、移動終端能耗、和任務的執行成本隨著終端移動速度的增大而有明顯減少,說明基于閾值的判決準則和多屬性切換決策算法適用于移動邊緣計算中的計算切換。關鍵詞:移動邊緣計算:計算切換:判決準則;多屬性決策
標簽: 移動邊緣計算
上傳時間: 2022-03-11
上傳用戶:ttalli
在工業應用中常用一組傳感器對問一個被測量目標在一個過程的不同位置進行測量,然而由于每個傳感器位于過程的不同位置,它們將不問程度的受到嗓聲的干擾,為了從被嗓聲干擾的多傳感器測量值中獲得更準確的測量結果,霱要進“步研究多傳感器的融合理論多傳感器數據融合系統的關鍵在于如何充分利用各個傳感器的信息,得到對被測參數的最優估計,本文主要研究了以加權的方式進行多傳感器數據融合的方法,即研究如何對每個傳感器進行加權,從而得到對被測參數最優佑計的方法為此本文在介紹了多傳感器數據融合技術的基礎上,首先研究了基于奇異值分解的數據融合算法,通過對傳感器測量值構成的矩陣進行奇異值分解,利用每個傳感器測量值所對應的奇異值,可以估計出對每個傳感器權值的最優估計,從而在不要任何先驗知識的條件下,可僅由多傳感器的測量值,利用提出的算法得到在最小均方誤差意義下的被測參數的最優估計,此外,在許多工業過程中,人們利用多傳感器測量同一過程參數以控制該參數在過程中的不同位置能根據需要進行合理分布,此時人們希望利用多傳感器融合的測量結果,對每一個傳感器的測量數據進行重建,以獲得對每一個傳感器的測量結果進行更為準確的估計。為此,本文進一步研究了基于小波降噪和數據融合的傳感器數據重建算法,仿真和實驗結果都說明提出算法是有效的,最后,研究了非線性動態系統的狀態融合問題,研究了加權無氣味卡爾曼濾波(UKF)方法,研究表明無氣味卡爾曼波波能克服了擴展卡爾曼濾波(EKF)在狀態融合估計中的不足,可以得到了更準確的狀態融合估計結關鍵詞多傳感器系統,數據融合,奇異值分解,UKF
上傳時間: 2022-03-16
上傳用戶:aben
基于MATLAB Simulink的電壓電流雙閉環控制的仿真,包含算法及波形。
上傳時間: 2022-04-07
上傳用戶:
信道編碼技術能夠顯著改善通信系統的性能,帶來編碼增益,提高通信系統的容量。一直以來,人們都在尋找一種信道容量可以達到香農極限的編碼。2007年,E.Arikan提出了一種名為極化碼(Polar Code)的編碼技術,在二進制離散無記憶信道條件下,理論上被證明可以達到香農極限,并且編解碼具有較低的算法復雜度,成為信道編碼史上一個重大突破。極化碼作為一種新興的編碼技術,引起了無線通信界廣泛的關注,成為編碼領域最受矚目的研究熱點之一。本文系統的闡述了極化碼,分析了極化碼的編解碼原理,然后將其與Turbo碼、LDPC碼進行了仿真比較。首先介紹了信道極化現象(Channel Polarization),然后詳細討論了信道合并(Channel Combining)和信道拆分(Channel Spitting)的過程,以及信道極化的重要特性。接著重點介紹了極化碼的編解碼構造方法,系統地推導了極化碼生成矩陣的形成過程,總結了極化碼信息位選取的方法,并深入研究了極化碼的錯誤概率的上下界限。最后,對極化碼的編解碼進行了仿真實現,探討了不同的編碼塊長度、不同的編碼速率及不同的迭代次數對極化碼性能的影響。并將極化碼與Turbo碼、LDPC碼進行仿真比較,分析了這三種編碼的性能以及優缺點。關鍵詞:信道編碼、極化碼、信道極化現象、sC解碼、Turbo碼、LDPC碼本章中,首先簡單地描述了數字通信系統,概述了信息傳輸過程中具體的信道模型,然后詳細回顧了信道編碼理論與技術的研究現況和發展歷史,以及簡要地概述了極化碼的發展歷程、編解碼特點、硬件方面及其應用研究,最后簡要概括了本文的主要工作,并給出了全文的詳細內容安排。
標簽: 極化碼
上傳時間: 2022-06-15
上傳用戶:
21世紀是信息快速發展的時代,隨著計算機網絡的應用越來越廣泛,網絡安全也逐漸成為人們普遍關注的課題。可以預言,今后的社會將進入全面的網絡時代和信息共享時代,因此,網絡安全極其重要,只有安全的網絡才能保證網絡生活能夠有序進行、網絡系統不遭破壞、信息不被竊取、網絡服務不被非法中斷等。為了保證計算機網絡的可靠性、可用性、完整性、保密性和真實性等安全性,不僅要保證計算機網絡設備安全和計算機網絡系統安全,還要保護數據的安全。對數據實施安全的加密算法是保護數據安全的有效手段。AES(advanced encryption standard)是美國國家標準和技術研究所宣布采用的高級加密標準,可以預測,AES在今后很長的一段時間內將會在信息安全中扮演重要的角色,因此對AES算法實現的研究成為國內外的熱點,它將會在信息安全領域得到廣泛的應用。AES在實現方面具有速度快、可并行處理、對處理器的結構無特殊要求,算法設計相對簡單,分組長度可以改變,而且具有很好的可擴充性。AES算法的這些特點使得選用FPGA來實現AES算法具有很好的優越性,本文就是針對AES算法的FPGA實現進行研究。本文介紹了用FPGA實現AES算法所用的開發工具、開發語言和所選用的芯片,還具體介紹了AES算法的硬件實現方式,在此基礎上,著重闡述了AES算法FPGA實現的總體設計框圖,并對各個部分的設計分別給與介紹,給出了實現加密解密的時序仿真和設計結果。
上傳時間: 2022-06-18
上傳用戶:shjgzh
【摘要】在人們生活以及工業生產等諸多領域經常涉及到液位和流量的控制問題,例如居民生活用水的供應,飲料、食品加工,溶液過濾,化工生產等多種行業的生產加工過程,通常需要使用蓄液池, 蓄液池中的液位需要維持合適的高度,既不能太滿溢出造成浪費, 也不能過少而無法滿足需求。因此液面高度是工業控制過程中一個重要的參數, 特別是在動態的狀態下, 采用適合的方法對液位進行檢測、控制,能收到很好的效果。PID 控制(比例、積分和微分控制)是目前采用最多的控制方法。【關鍵詞】水箱液位; PID 控制;液位控制; Matlab 仿真一.引言在人們生活以及工業生產等諸多領域經常涉及到液位和流量的控制問題, 例如居民生活用水的供應,飲料、食品加工,溶液過濾,化工生產等多種行業的生產加工過程, 通常需要使用蓄液池, 蓄液池中的液位需要維持合適的高度, 既不能太滿溢出造成浪費, 也不能過少而無法滿足需求。因此液面高度是工業控制過程中一個重要的參數, 特別是在動態的狀態下, 采用適合的方法對液位進行檢測、控制,能收到很好的效果。本論文利用PID 算法在matlab 中進行仿真并講解實物搭接效果, 具體如下:1、利用指導書中推導的模型和實際的參數,建立水箱液位控制系統的數學模型,并進行線性化;2、構成水箱液位閉環無靜差系統,并測其動態性能指標和提出改善系統動態性能的方法,使得系統動態性能指標滿足σ%≤10%,調節器調節閥水槽測量變送出水閥系數<0.5 秒,靜態誤差小于2%;3、通過在matlab 編程中求取合適的反饋變量K,然后與仿真模型結合構成最優控制的水箱液位系統,通過圖形分析是否滿足系統的性能參數;
標簽: pid調節控制系統
上傳時間: 2022-06-18
上傳用戶:1208020161
本設計針對目前市場上傳統充電控制器對蓄電池的充放電控制不合理,同時保護也不夠充分,使得蓄電池的壽命縮短這種情況,研究確定了一種基于單片機的太陽能充電控制器的方案。在太陽能對蓄電池的充放電方式、控制器的功能要求和實際應用方面做了一定分析,完成了硬件電路設計和軟件編制,實現了對蓄電池的高效率管理。設計一種太陽能LED照明系統充電控制器,既能實現太陽能電池的最大功率點跟蹤(MPPT)又能滿足蓄電池電壓限制條件和浮充特性。構建實驗系統,測試表明,控制器可以根據蓄電池狀態準確地在MPPT、恒壓、浮充算法之間切換,MPPT充電效率較恒壓充電提高約16%,該充電控制器既實現了太陽能的有效利用,又延長了蓄電池的使用壽命。在總體方案的指導下,本設計使用STMSS系列8位微控制器是STM8系列的主流微控制器產品,采用意法半導體的130納米工藝技術和先進的內核架構,主頻達到16MHz(105系列),處理能力高達20MTPS。內置EEPROM、阻容(RC)振蕩器以及完整的標準外設,性價比高,STMSS指令格式和意法半導體早期的ST7系列基本類似,甚至兼容,內嵌單線仿真接口模塊,支持STWM仿真,降低了開發成本;擁有多種外設,而且外設的內部結構、配置方式與意法半導體的同樣是Cortex-M3內核的32位嵌入式微處理器STM32系列的MCU基本相同或者相似。另外系列芯片功耗低、功能完善、性價比高,可廣泛應用在家用電器、電源控制和管理、電機控制等領域,是8位機為控制器控制系統較為理想的升級替代控制芯片"261,軟件部分依據PWM(Pulse Wiath Modulation)脈寬調制控制策略,編制程序使單片機輸出PMM控制信號,通過控制光電耦合器通斷進而控制MOSFET管開啟和關閉,達到控制蓄電池充放電的目的,同時按照功能要求實現了對蓄電池過充、過放保護和短路保護。實驗表明,該控制器性能優良,可靠性高,可以時刻監視太陽能電池板和蓄電池狀態,實現控制蓄電池最優充放電,達到延長蓄電池的使用壽命。
上傳時間: 2022-06-19
上傳用戶:
論文首先研究了基于Har-like特征和Adaboost分類器的目標車輛探測算法原理和參數設置,并利用車載攝像頭采集真實道路車輛圖像,建立車輛樣本數據庫,訓練車輛分類器,實現對道路車輛的探測,并對探測效果進行量化分析。針對在車輛探測過程中誤檢率較高、探測不連續以及檢測框不穩定的現象,對基于無跡卡爾曼濾波器的車輛跟蹤算法進行了研究,建立了車輛相對運動模型,對真實道路交通場景中的多目標車輛進行探測與跟蹤,并對跟蹤算法對探測性能提升的效果和原因進行了深入分析。在單目測距中,針對一般測距算法受車輛俯仰角和攝像頭畸變影響很大的缺點,利用PreScan仿真軟件,對車輛測距算法進行了改進,提山了一個同時考慮車輛俯仰角和攝像頭畸變等參數的測距模型,以及一種將攝像頭內參與外參分開標定的新方法,最后利用場地實驗利真實道路交通場景對模型的測距精度、參數靈敏度進行量化分析。研究了僅利用圖像信息估算車輛間碰撞時間的方法,利用PreScan仿真軟件,對車輛碰撞時間估算算法進行了改進,建立了一個考慮車間相對加速度碰撞時間估算模型,最后,利用真實道路交通視頻對算法進行驗證和分析。最后,介紹了利用仿真軟件輔助ADAS開發的方法,在虛擬的開發環境中建立了以真實攝像頭物理參數為依據的攝像頭仿真模型、交通場景,實現了對單目測距和碰撞時間估算算法的驗證和改進。實驗結果表明,論文中所建立的算法表現出良好的性能,所構建的基于PreScan的仿真平臺能有效地提高算法的開發效率.
上傳時間: 2022-06-21
上傳用戶:d1997wayne
1引言隨著高r能永磁材料、電力電了技術、大規模集成電路和計算機技術的發展,永同步電機PMSMD)的應用領城不擴大。由于對電機控制性能的要求越來越高,因此如何建立有效的仿真模型越來受到人們的關注。本文在分析永司步電機數學模型的基礎上,提出了一種PMSM控制系統建模的方法,在此仿真模型基礎上,可以十分便捷地實現和驗證控制算法。因此,它為分析和設計PMSM控制系統提供了有效的手段,也為實際電機控制系統的設計和調試提供了新的思路。2永磁同步電機的數學模型[]水磁同步電動機三相繞組分別為U.v.w,各相繞組平面的軸線在與轉子軸垂直的平面上,三相繞組的電壓回路方程如下;式中,U L,為各相繞組兩端的電壓14A為各相的線電流,中uoyow為相統組的總磁鏈,R為定子每相繞組的電陽:P為微外算子(d/at).磁鏈方程為:
上傳時間: 2022-06-22
上傳用戶:qingfengchizhu