區(qū)截裝置測速法是現(xiàn)代靶場中彈丸測速的普遍方法,測時(shí)儀作為區(qū)截裝置測速系統(tǒng)的主要組成部分,其性能直接影響彈丸測速的可靠性和精度。本文根據(jù)測時(shí)儀的發(fā)展現(xiàn)狀,按照設(shè)計(jì)要求,設(shè)計(jì)了一種基于單片機(jī)和FPGA的高精度智能測時(shí)儀,系統(tǒng)工作穩(wěn)定、操作方便、測時(shí)精度可達(dá)25ns。 本文詳細(xì)給出了系統(tǒng)的設(shè)計(jì)方案。該方案提出了一種在后端用單片機(jī)處理干擾信號(hào)的新方法,簡化了系統(tǒng)硬件電路的設(shè)計(jì),提高了測時(shí)精度;提出了一種基于系統(tǒng)基準(zhǔn)時(shí)間的測時(shí)方案,相對(duì)于傳統(tǒng)的測時(shí)方法,該方案為分析試驗(yàn)過程提供了有效數(shù)據(jù),進(jìn)一步提高了系統(tǒng)工作的可靠性;給出了一種輸入信息處理的有效方法,保證了系統(tǒng)工作的穩(wěn)定性。 本文設(shè)計(jì)了系統(tǒng)FPGA邏輯電路,包括輸入信號(hào)的整形濾波、輸入信號(hào)的捕捉、時(shí)基模塊、異步時(shí)鐘域間數(shù)據(jù)傳遞、與單片機(jī)通信、單片機(jī)I/O總線擴(kuò)展等;實(shí)現(xiàn)了系統(tǒng)單片機(jī)程序,包括單片機(jī)和。FPGA的數(shù)據(jù)交換、干擾信號(hào)排除和彈丸測速測頻算法的實(shí)現(xiàn)、LCD液晶菜單的設(shè)計(jì)和打印機(jī)的控制、FLASH的讀寫、上電后對(duì)FPGA的配置、與上位機(jī)的通信等;分析了系統(tǒng)的誤差因素,給出了系統(tǒng)的誤差和相對(duì)誤差的計(jì)算公式;通過實(shí)驗(yàn)室模擬測試以及靶場現(xiàn)場測試,結(jié)果表明系統(tǒng)工作可靠、精度滿足設(shè)計(jì)要求、人機(jī)界面友好。
標(biāo)簽: 高精度 儀的設(shè)計(jì)
上傳時(shí)間: 2013-07-25
上傳用戶:pwcsoft
基于過采樣和∑-△噪聲整形技術(shù)的DAC能夠可靠地把數(shù)字信號(hào)轉(zhuǎn)換為高精度的模擬信號(hào)(大于等于16位)。采用這一架構(gòu)進(jìn)行數(shù)模轉(zhuǎn)換具有諸多優(yōu)點(diǎn),例如極低的失配噪聲和更高的可靠性,便于實(shí)現(xiàn)嵌入式集成等,最重要的是可以得到其他DAC結(jié)構(gòu)所無法達(dá)到的精度和動(dòng)態(tài)范圍。在高精度測量,音頻轉(zhuǎn)換,汽車電子等領(lǐng)域有著廣泛的應(yīng)用價(jià)值。 本文采用∑-△結(jié)構(gòu)以FPGA方式實(shí)現(xiàn)了一個(gè)具有高精度的數(shù)模轉(zhuǎn)換器,在24比特的輸入信號(hào)下,達(dá)到了約150dB的信噪比。作為一個(gè)靈活的音頻DAC實(shí)現(xiàn)方案。該DAC可以對(duì)CD/DVD/HDCD/SACD等多種制式下的音頻信號(hào)進(jìn)行處理,接受并轉(zhuǎn)換采樣率為32/44.1/48/88.2/96/192kHz,字長為16/18/20/24比特的PCM數(shù)據(jù),具備良好的兼容性和通用性。 由于非線性和不穩(wěn)定性的存在,高階∑-△調(diào)制器的設(shè)計(jì)與實(shí)現(xiàn)存在較大的難度。本文綜合大量文獻(xiàn)中的經(jīng)驗(yàn)原則和方法,闡述了穩(wěn)定的高階高精度調(diào)制器的設(shè)計(jì)流程;并據(jù)此設(shè)計(jì)了達(dá)到24bit精度和滿量程輸入范圍的的5階128倍調(diào)制器。本文創(chuàng)新性地提出了∑-△調(diào)制器的一種高效率流水線實(shí)現(xiàn)結(jié)構(gòu)。分析表明,與其他常見的∑-△調(diào)制器實(shí)現(xiàn)結(jié)構(gòu)相比,本方案具有結(jié)構(gòu)簡單、運(yùn)算單元少等優(yōu)點(diǎn);此外在同樣信號(hào)采樣率下,調(diào)制器所需的時(shí)鐘頻率大大降低。 文中的過采樣濾波模塊采用三級(jí)半帶濾波器和一個(gè)可變CIC濾波器級(jí)聯(lián)組成,可以達(dá)到最高128倍的過采樣比,同時(shí)具有良好的通帶和阻帶特性。在半帶濾波器的設(shè)計(jì)中采用了CSD編碼,使結(jié)構(gòu)得到了充分的簡化。 本文提出的過采樣DAC方案具有可重配置結(jié)構(gòu),讓使用者能夠方便地控制過采樣比和調(diào)制器階數(shù)。通過積分梳狀濾波器的配置,能夠獲得32/64/128倍的不同過采樣比,從而實(shí)現(xiàn)對(duì)于32~192kHz多種采樣率輸入的處理。在不同輸入字長情況下,通過調(diào)制器的重構(gòu),則可以將調(diào)制器由高精度的5階模式改變?yōu)楣母偷?階模式,滿足不同分辨率信號(hào)輸入時(shí)的不同精度要求。這是本文的另一創(chuàng)新之處。 目前,該過采樣DAC已經(jīng)在XilinxVirtexⅡ系列FPGA器件下得到硬件實(shí)現(xiàn)和驗(yàn)證。測試表明,對(duì)于從32kHz到192kHz的不同輸入信號(hào),該DAC模塊輸出1比特碼流的帶內(nèi)信噪比均能滿足24比特?cái)?shù)據(jù)轉(zhuǎn)換應(yīng)用的分辨率要求。
上傳時(shí)間: 2013-07-08
上傳用戶:從此走出陰霾
數(shù)字超聲診斷設(shè)備在臨床診斷中應(yīng)用十分廣泛,研制全數(shù)字化的醫(yī)療儀器已成為趨勢。盡管很多超聲成像儀器設(shè)計(jì)制造中使用了數(shù)字化技術(shù),但是我們可以說現(xiàn)代VLSI 和EDA 技術(shù)在其中并沒有得到充分有效的應(yīng)用。隨著現(xiàn)代電子信息技術(shù)的發(fā)展,PLD 在很多與B 型超聲成像或多普勒超聲成像有關(guān)的領(lǐng)域都得到了較好的應(yīng)用,例如數(shù)字通信和相控雷達(dá)領(lǐng)域。 在研究現(xiàn)代超聲成像原理的基礎(chǔ)上,我們首先介紹了常見的數(shù)字超聲成像儀器的基本結(jié)構(gòu)和模塊功能,同時(shí)也介紹了現(xiàn)代FPGA 和EDA 技術(shù)。隨后我們?cè)敿?xì)分析討論了B 超中,全數(shù)字化波束合成器的關(guān)鍵技術(shù)和實(shí)現(xiàn)手段。我們?cè)O(shè)計(jì)實(shí)現(xiàn)了片內(nèi)高速異步FIFO 以降低采樣率,仿真結(jié)果表明資源使用合理且訪問時(shí)間很小。正交檢波方法既能給出灰度超聲成像所需要的回波的幅值信息,也能給出多普勒超聲成像所需要的回波的相移信息。我們?cè)O(shè)計(jì)實(shí)現(xiàn)了基于直接數(shù)字頻率合成原理的數(shù)控振蕩器,能夠給出一對(duì)幅值和相位較平衡的正交信號(hào),且在FPGA 片內(nèi)實(shí)現(xiàn)方案簡單廉價(jià)。數(shù)控振蕩器輸出波形的頻率可動(dòng)態(tài)控制且精度較高,對(duì)于隨著超聲在人體組織深度上的穿透衰減,導(dǎo)致回波中心頻率下移的聲學(xué)物理現(xiàn)象,可視作將回波接收機(jī)的中心頻率同步動(dòng)態(tài)變化進(jìn)行補(bǔ)償。 還設(shè)計(jì)實(shí)現(xiàn)了B 型數(shù)字超聲診斷儀前端發(fā)射波束聚焦和掃描控制子系統(tǒng)。在單片F(xiàn)PGA 芯片內(nèi)部設(shè)計(jì)實(shí)現(xiàn)了聚焦延時(shí)、脈寬和重復(fù)頻率可動(dòng)態(tài)控制的發(fā)射驅(qū)動(dòng)脈沖產(chǎn)生器、線掃控制、探頭激勵(lì)控制、功能碼存儲(chǔ)等功能模塊,功能仿真和時(shí)序分析結(jié)果表明該子系統(tǒng)為設(shè)計(jì)實(shí)現(xiàn)高速度、高精度、高集成度的全數(shù)字化超聲診斷設(shè)備打下了良好的基礎(chǔ),將加快其研發(fā)和制造進(jìn)程,為生物醫(yī)學(xué)電子、醫(yī)療設(shè)備和超聲診斷等方面帶來新思路。
標(biāo)簽: 全數(shù)字 中的應(yīng)用 超聲診斷儀
上傳時(shí)間: 2013-05-30
上傳用戶:tonyshao
J:\HY-SRF05超聲波模塊(全部資料) 內(nèi)有51,pic測距程序,顯示程序1602,12864,等還有模塊原理圖等
上傳時(shí)間: 2013-07-03
上傳用戶:yzhl1988
電位計(jì)訊號(hào)轉(zhuǎn)換器 AT-PM1-P1-DN-ADL 1.產(chǎn)品說明 AT系列轉(zhuǎn)換器/分配器主要設(shè)計(jì)使用于一般訊號(hào)迴路中之轉(zhuǎn)換與隔離;如 4~20mA、0~10V、熱電偶(Type K, J, E, T)、熱電阻(Rtd-Pt100Ω)、荷重元、電位計(jì)(三線式)、電阻(二線式)及交流電壓/電流等訊號(hào),機(jī)種齊全。 此款薄型設(shè)計(jì)的轉(zhuǎn)換器/分配器,除了能提供兩組訊號(hào)輸出(輸出間隔離)或24V激發(fā)電源供傳送器使用外,切換式電源亦提供了安裝的便利性。上方并設(shè)計(jì)了電源、輸入及輸出指示燈及可插拔式接線端子方便現(xiàn)場施工及工作狀態(tài)檢視。 2.產(chǎn)品特點(diǎn) 可選擇帶指撥開關(guān)切換,六種常規(guī)輸出信號(hào)0-5V/0~10V/1~5V/2~10V/4~20mA/ 0~20mA 可自行切換。 雙回路輸出完全隔離,可選擇不同信號(hào)。 設(shè)計(jì)了電源、輸入及輸出LED指示燈,方便現(xiàn)場工作狀態(tài)檢視。 規(guī)格選擇表中可指定選購0.1%精度 17.55mm薄型35mm導(dǎo)軌安裝。 依據(jù)CE國際標(biāo)準(zhǔn)規(guī)范設(shè)計(jì)。 3.技術(shù)規(guī)格 用途:信號(hào)轉(zhuǎn)換及隔離 過載輸入能力:電流:10×額定10秒 第二組輸出:可選擇 輸入范圍:P1:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ P2:0 Ω ~ 2.0 KΩ / ~ 100.0 KΩ 精確度: ≦±0.2% of F.S. ≦±0.1% of F.S. 偵測電壓:1.6V 輸入耗損: 交流電流:≤ 0.1VA; 交流電壓:≤ 0.15VA 反應(yīng)時(shí)間: ≤ 250msec (10%~90% of FS) 輸出波紋: ≤ ±0.1% of F.S. 滿量程校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 零點(diǎn)校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 隔離:AC 2.0 KV 輸出1與輸出2之間 隔離抗阻:DC 500V 100MΩ 工作電源: AC 85~265V/DC 100~300V, 50/60Hz 或 AC/DC 20~56V (選購規(guī)格) 消耗功率: DC 4W, AC 6.0VA 工作溫度: 0~60 ºC 工作濕度: 20~95% RH, 無結(jié)露 溫度系數(shù): ≤ 100PPM/ ºC (0~50 ºC) 儲(chǔ)存溫度: -10~70 ºC 保護(hù)等級(jí): IP 42 振動(dòng)測試: 1~800 Hz, 3.175 g2/Hz 外觀尺寸: 94.0mm x 94.0mm x 17.5mm 外殼材質(zhì): ABS防火材料,UL94V0 安裝軌道: 35mm DIN導(dǎo)軌 (EN50022) 重量: 250g 安全規(guī)范(LVD): IEC 61010 (Installation category 3) EMC: EN 55011:2002; EN 61326:2003 EMI: EN 55011:2002; EN 61326:2003 常用規(guī)格:AT-PM1-P1-DN-ADL 電位計(jì)訊號(hào)轉(zhuǎn)換器,一組輸出,輸入范圍:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ,輸出一組輸出4-20mA,工作電源AC/DC20-56V
標(biāo)簽: 電位計(jì) 訊號(hào) 轉(zhuǎn)換器
上傳時(shí)間: 2013-11-05
上傳用戶:feitian920
現(xiàn)代相控陣?yán)走_(dá)為了保證空間功率合成精度需要高精度的雷達(dá)信號(hào),設(shè)計(jì)實(shí)現(xiàn)了一種以AD9959為核心的高精度多通道雷達(dá)信號(hào)源。信號(hào)源利用多片AD9959產(chǎn)生32路正弦波、線性調(diào)頻以及相位編碼等多種信號(hào)形式,并設(shè)計(jì)采用AD8302對(duì)多路信號(hào)的幅度和相位進(jìn)行檢測與調(diào)整。該信號(hào)源已應(yīng)用實(shí)際工程中,現(xiàn)場實(shí)驗(yàn)結(jié)果表明,該信號(hào)源系統(tǒng)產(chǎn)生的高頻信號(hào)頻率穩(wěn)定度高、相位幅度一致性好,完全滿足對(duì)信號(hào)源的性能指標(biāo)的要求。
上傳時(shí)間: 2013-11-22
上傳用戶:lo25643
特征: 分辨率: 24 位(無失碼) 有效位數(shù): 21位( PGA = 128 特征: 分辨率:24位(無失碼) 有效位數(shù):21位 輸出碼率:10Hz/80Hz(可選) 通道固定增益:128倍 對(duì)50Hz、60Hz噪聲抑制:-100dB 工作電壓:2.5v – 6v 可選擇的內(nèi)外置晶振 簡單的SPI接口 應(yīng)用場合: 電子秤、數(shù)字壓力傳感器; 血壓計(jì)等醫(yī)療儀器; 微弱信號(hào)測量及工業(yè)控制 其他相關(guān)資料需求:18938649401@189.cn 18938649401
上傳時(shí)間: 2013-11-19
上傳用戶:英雄
摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類號(hào): TN 79 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問 題。 1) 時(shí)鐘的快速電平切換將給電路帶來的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時(shí)來達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開頭有一個(gè)用于同步檢測的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過采樣 點(diǎn)依次相差90°相位。通過存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問題, 降低了系統(tǒng)設(shè)計(jì)的難度。
標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用
上傳時(shí)間: 2013-12-17
上傳用戶:xg262122
交直流轉(zhuǎn)換器 AT-VA2-D-A3-DD-ADL 1.產(chǎn)品說明 AT系列轉(zhuǎn)換器/分配器主要設(shè)計(jì)使用于一般訊號(hào)迴路中之轉(zhuǎn)換與隔離;如 4~20mA、0~10V、熱電偶(Type K, J, E, T)、熱電阻(Rtd-Pt100Ω)、荷重元、電位計(jì)(三線式)、電阻(二線式)及交流電壓/電流等訊號(hào),機(jī)種齊全。 此款薄型設(shè)計(jì)的轉(zhuǎn)換器/分配器,除了能提供兩組訊號(hào)輸出(輸出間隔離)或24V激發(fā)電源供傳送器使用外,切換式電源亦提供了安裝的便利性。上方并設(shè)計(jì)了電源、輸入及輸出指示燈及可插拔式接線端子方便現(xiàn)場施工及工作狀態(tài)檢視。 2.產(chǎn)品特點(diǎn) 可選擇帶指撥開關(guān)切換,六種常規(guī)輸出信號(hào)0-5V/0~10V/1~5V/2~10V/4~20mA/ 0~20mA 可自行切換。 雙回路輸出完全隔離,可選擇不同信號(hào)。 設(shè)計(jì)了電源、輸入及輸出LED指示燈,方便現(xiàn)場工作狀態(tài)檢視。 規(guī)格選擇表中可指定選購0.1%精度 17.55mm薄型35mm導(dǎo)軌安裝。 依據(jù)CE國際標(biāo)準(zhǔn)規(guī)范設(shè)計(jì)。 3.技術(shù)規(guī)格 用途:信號(hào)轉(zhuǎn)換及隔離 過載輸入能力:電流:10×額定10秒 第二組輸出:可選擇 精確度: 交流: ≦±0.5% of F.S. 直流: ≦±0.2% of F.S. 輸入耗損: 交流電流:≤ 0.1VA; 交流電壓:≤ 0.15VA 反應(yīng)時(shí)間: ≤ 250msec (10%~90% of FS) 輸出波紋: ≤ ±0.1% of F.S. 滿量程校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 零點(diǎn)校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 隔離:AC 2.0 KV 輸出1與輸出2之間 隔離抗阻:DC 500V 100MΩ 工作電源: AC 85~265V/DC 100~300V, 50/60Hz 或 AC/DC 20~56V (選購規(guī)格) 消耗功率: DC 4W, AC 6.0VA 工作溫度: 0~60 ºC 工作濕度: 20~95% RH, 無結(jié)露 溫度系數(shù): ≤ 100PPM/ ºC (0~50 ºC) 儲(chǔ)存溫度: -10~70 ºC 保護(hù)等級(jí): IP 42 振動(dòng)測試: 1~800 Hz, 3.175 g2/Hz 外觀尺寸: 94.0mm x 94.0mm x 17.5mm 外殼材質(zhì): ABS防火材料,UL94V0 安裝軌道: 35mm DIN導(dǎo)軌 (EN50022) 重量: 250g 安全規(guī)范(LVD): IEC 61010 (Installation category 3) EMC: EN 55011:2002; EN 61326:2003 EMI: EN 55011:2002; EN 61326:2003 常用規(guī)格:AT-VA2-D-A3-DD-ADL 交直流轉(zhuǎn)換器,2組輸出,輸入交流輸入0-19.99mA,輸出1:4-20mA,輸出2:4-20mA,工作電源AC/DC20-56V
標(biāo)簽: 交直流 轉(zhuǎn)換器
上傳時(shí)間: 2013-11-22
上傳用戶:nem567397
AL-LJ(K)系列零序電流互感器 保定奧蘭電氣科技有限責(zé)任公司生產(chǎn)的AL-LJ(K)系列零序電流互感器經(jīng)電力工業(yè)部電氣設(shè)備質(zhì)量檢測中心檢測,質(zhì)量優(yōu)于國標(biāo)GB1208-1997《電流互感器》,具有精度高,線性度好,運(yùn)行可靠,安裝方便,外型美觀等特點(diǎn)。 零序電流互感器(電纜型)的孔徑范圍為Ф40~Ф360,有各種容量、變比、準(zhǔn)確限值系數(shù),可與小電流接地選線裝置、繼電器、儀表等配套使用,實(shí)現(xiàn)對(duì)系統(tǒng)的檢測和保護(hù)。裝置具有靈敏度高,線性度好等優(yōu)點(diǎn)。產(chǎn)品分整體式和組合式兩類?;ジ衅鞑捎霉こ趟芰贤鈿ぁ渲瑵沧⑷芊猓煌庑兔烙^、安裝方便、節(jié)省安裝空間、規(guī)格品種多,可適用各種保護(hù)裝置和電力系統(tǒng)各種運(yùn)行方式(中性點(diǎn)接地,中性點(diǎn)不接地,大電阻接地,小電阻接地和消弧線圈接地)的需要。 空格:用于小電流接地選線裝置 A:與DD11/60型繼電器配合使用 J:用于微機(jī)型繼電保護(hù) B:與DL11/0.2型繼電器配合使用 保定市奧蘭電氣科技有限責(zé)任公司開發(fā)生產(chǎn)的零序電流互感器是一種套在電纜上的CT,它的一次繞組為穿過CT內(nèi)孔的三相一次導(dǎo)體電纜,它的一次電流是一次三相電流的向量和(在正常、三相平衡時(shí)為0),當(dāng)發(fā)生一次系統(tǒng)單相接地時(shí)三相平衡關(guān)系被打破,這時(shí)零序電流互感器的二次就有電流輸出,供給保護(hù)裝置,實(shí)現(xiàn)保護(hù)和監(jiān)控。 零序電流互感器的一次絕緣就是電纜自身絕緣,所以這種零序電流互感器可以套在任一電壓等級(jí)的電纜上。
標(biāo)簽: 零序電流互感器
上傳時(shí)間: 2013-10-30
上傳用戶:fengzimili
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1