亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

票據(jù)(jù)打印機(jī)(jī)

  • java入門編程合集

    題目:古典問題:有一對(duì)兔子,從出生后第3個(gè)月起每個(gè)月都生一對(duì)兔子,小兔子長到第三個(gè)月后每個(gè)月又生一對(duì)兔子,假如兔子都不死,問每個(gè)月的兔子總數(shù)為多少?    //這是一個(gè)菲波拉契數(shù)列問題 public class lianxi01 { public static void main(String[] args) { System.out.println("第1個(gè)月的兔子對(duì)數(shù):    1"); System.out.println("第2個(gè)月的兔子對(duì)數(shù):    1"); int f1 = 1, f2 = 1, f, M=24;      for(int i=3; i<=M; i++) {       f = f2;       f2 = f1 + f2;       f1 = f;       System.out.println("第" + i +"個(gè)月的兔子對(duì)數(shù): "+f2);          } } } 【程序2】    題目:判斷101-200之間有多少個(gè)素?cái)?shù),并輸出所有素?cái)?shù)。 程序分析:判斷素?cái)?shù)的方法:用一個(gè)數(shù)分別去除2到sqrt(這個(gè)數(shù)),如果能被整除, 則表明此數(shù)不是素?cái)?shù),反之是素?cái)?shù)。    public class lianxi02 { public static void main(String[] args) {     int count = 0;     for(int i=101; i<200; i+=2) {      boolean b = false;      for(int j=2; j<=Math.sqrt(i); j++)      {         if(i % j == 0) { b = false; break; }          else           { b = true; }      }         if(b == true) {count ++;System.out.println(i );}                                   }     System.out.println( "素?cái)?shù)個(gè)數(shù)是: " + count); } } 【程序3】    題目:打印出所有的 "水仙花數(shù) ",所謂 "水仙花數(shù) "是指一個(gè)三位數(shù),其各位數(shù)字立方和等于該數(shù)本身。例如:153是一個(gè) "水仙花數(shù) ",因?yàn)?53=1的三次方+5的三次方+3的三次方。 public class lianxi03 { public static void main(String[] args) {      int b1, b2, b3; 

    標(biāo)簽: java 編程

    上傳時(shí)間: 2017-12-24

    上傳用戶:Ariza

  • Hopfield 網(wǎng)——擅長于聯(lián)想記憶與解迷路 實(shí)現(xiàn)H網(wǎng)聯(lián)想記憶的關(guān)鍵

    Hopfield 網(wǎng)——擅長于聯(lián)想記憶與解迷路 實(shí)現(xiàn)H網(wǎng)聯(lián)想記憶的關(guān)鍵,是使被記憶的模式樣本對(duì)應(yīng)網(wǎng)絡(luò)能量函數(shù)的極小值。 設(shè)有M個(gè)N維記憶模式,通過對(duì)網(wǎng)絡(luò)N個(gè)神經(jīng)元之間連接權(quán) wij 和N個(gè)輸出閾值θj的設(shè)計(jì),使得: 這M個(gè)記憶模式所對(duì)應(yīng)的網(wǎng)絡(luò)狀態(tài)正好是網(wǎng)絡(luò)能量函數(shù)的M個(gè)極小值。 比較困難,目前還沒有一個(gè)適應(yīng)任意形式的記憶模式的有效、通用的設(shè)計(jì)方法。 H網(wǎng)的算法 1)學(xué)習(xí)模式——決定權(quán)重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個(gè)神經(jīng)元j、i間的權(quán)重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數(shù) ap(s):第p個(gè)模式的第s個(gè)要素(-1或1) wij:第j個(gè)神經(jīng)元與第i個(gè)神經(jīng)元間的權(quán)重 i = j時(shí),wij=0,即各神經(jīng)元的輸出不直接返回自身。 2)想起模式: 神經(jīng)元輸出值的初始化 想起時(shí),一般是未知的輸入。設(shè)xi(0)為未知模式的第i個(gè)要素(-1或1) 將xi(0)作為相對(duì)應(yīng)的神經(jīng)元的初始值,其中,0意味t=0。 反復(fù)部分:對(duì)各神經(jīng)元,計(jì)算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經(jīng)元總數(shù) f()--Sgn() θi—神經(jīng)元i發(fā)火閾值 反復(fù)進(jìn)行,直到各個(gè)神經(jīng)元的輸出不再變化。

    標(biāo)簽: Hopfield 聯(lián)想

    上傳時(shí)間: 2015-03-16

    上傳用戶:JasonC

  • 詞法分析程序

    詞法分析程序,可對(duì)以下的C源程序進(jìn)行分析:main() {int a[12] ,sum for(i=1 i<=12 i++) {for(j=1 j<=12 j++)scanf("%d",&a[i][j]) } for(i=12 i>=1 i--){ for(j=12 j>=1 j--){ if(i==j&&i+j==13)sum+=a[i][j] } } printf("%c",sum) }

    標(biāo)簽: 程序

    上傳時(shí)間: 2013-12-26

    上傳用戶:skhlm

  • 算法介紹 矩陣求逆在程序中很常見

    算法介紹 矩陣求逆在程序中很常見,主要應(yīng)用于求Billboard矩陣。按照定義的計(jì)算方法乘法運(yùn)算,嚴(yán)重影響了性能。在需要大量Billboard矩陣運(yùn)算時(shí),矩陣求逆的優(yōu)化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對(duì)于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對(duì)值最大的元素,并記住次元素所在的行號(hào)和列號(hào),在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據(jù)在全選主元過程中所記錄的行、列交換的信息進(jìn)行恢復(fù),恢復(fù)的原則如下:在全選主元過程中,先交換的行(列)后進(jìn)行恢復(fù);原來的行(列)交換用列(行)交換來恢復(fù)。

    標(biāo)簽: 算法 矩陣求逆 程序

    上傳時(shí)間: 2015-04-09

    上傳用戶:wang5829

  • 一個(gè)簡單的類似鋼琴的游戲

    一個(gè)簡單的類似鋼琴的游戲,能夠發(fā)出3個(gè)8度音, 低音:1~7; 中音:Q~U或q~u; 高音:A~J或a~j;

    標(biāo)簽: 鋼琴

    上傳時(shí)間: 2015-06-09

    上傳用戶:784533221

  • Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權(quán)可正可負(fù) 2)算法描述: a)初始化:d

    Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權(quán)可正可負(fù) 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結(jié)束:dis即為所有點(diǎn)對(duì)的最短路徑矩陣 3)算法小結(jié):此算法簡單有效,由于三重循環(huán)結(jié)構(gòu)緊湊,對(duì)于稠密圖,效率要高于執(zhí)行|V|次Dijkstra算法。時(shí)間復(fù)雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個(gè)判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設(shè)成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍(lán)色部分,可以更直觀地得到I,j的連通情況。

    標(biāo)簽: Floyd-Warshall Shortest Pairs Paths

    上傳時(shí)間: 2013-12-01

    上傳用戶:dyctj

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2014-01-15

    上傳用戶:hongmo

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2013-12-26

    上傳用戶:dreamboy36

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2016-06-28

    上傳用戶:change0329

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2014-09-03

    上傳用戶:jjj0202

主站蜘蛛池模板: 内黄县| 平乡县| 和田市| 安康市| 鄂托克前旗| 西安市| 姚安县| 斗六市| 庆阳市| 龙游县| 新营市| 金阳县| 武隆县| 昭平县| 三明市| 黔东| 双柏县| 长葛市| 四子王旗| 武宣县| 垣曲县| 丹江口市| 安多县| 博乐市| 武强县| 白沙| 上杭县| 长子县| 延吉市| 无锡市| 潞西市| 大安市| 苍溪县| 友谊县| 蕲春县| 达日县| 吉林市| 峡江县| 临沧市| 沂南县| 保康县|