隨著半導體工藝的飛速發展和芯片設計水平的不斷進步,ARM微處理器的性能得到大幅度地提高,同時其芯片的價格也在不斷下降,嵌入式系統以其獨有的優勢,己經廣泛地滲透到科學研究和日常生活的各個方面。 本文以ARM7 LPC2132處理器為核心,結合蓋革一彌勒計數管對Time-To-Count輻射測量方法進行研究。ARM結構是基于精簡指令集計算機(RISC)原理而設計的,其指令集和相關的譯碼機制比復雜指令集計算機要簡單得多,使用一個小的、廉價的ARM微處理器就可實現很高的指令吞吐量和實時的中斷響應。基于ARM7TDMI-S核的LPC2132微處理器,其工作頻率可達到60MHz,這對于Time-To-Count技術是非常有利的,而且利用LPC2132芯片的定時/計數器引腳捕獲功能,可以直接讀取TC中的計數值,也就是說不再需要調用中斷函數讀取TC值,從而大大降低了計數前雜質時間。本文是在我師兄呂軍的《Time-To-Count測量方法初步研究》基礎上,使用了高速的ARM芯片,對基于MCS-51的Time-To-Count輻射測量系統進行了改進,進一步論證了采用高速ARM處理器芯片可以極大的提高G-M計數器的測量范圍與測量精度。 首先,討論了傳統的蓋革-彌勒計數管探測射線強度的方法,并指出傳統的脈沖測量方法的不足。然后討論了什么是Time-To-Count測量方法,對Time-To-Count測量方法的理論基礎進行分析。指出Time-To-Count方法與傳統的脈沖計數方法的區別,以及采用Time-To-Count方法進行輻射測量的可行性。 接著,詳細論述基于ARM7 LPC2132處理器的Time-To-Count輻射測量儀的原理、功能、特點以及輻射測量儀的各部分接口電路設計及相關程序的編制。 最后得出結論,通過高速32位ARM處理器的使用,Time-To-Count輻射測量儀的精度和量程均得到很大的提高,對于Y射線總量測量,使用了ARM處理器的Time-To-Count輻射測量儀的量程約為20 u R/h到1R/h,數據線性程度也比以前的Time-To-CotJnt輻射測量儀要好。所以在使用Time-To-Count方法進行的輻射測量時,如何減少雜質時間以及如何提高計數前時間的測量精度,是決定Time-To-Count輻射測量儀性能的關鍵因素。實驗用三只相同型號的J33G-M計數管分別作為探測元件,在100U R/h到lR/h的輻射場中進行試驗.每個測量點測量5次取平均,得出隨著照射量率的增大,輻射強度R的測量值偏小且與輻射真實值之間的誤差也隨之增大。如果將測量誤差限定在10%的范圍內,則此儀器的量程范圍為20 u R/h至1R/h,量程跨度近六個數量級。而用J33型G-M計數管作常規的脈沖測量,量程范圍約為50 u R/h到5000 u R/h,充分體現了運用Time-To-Count方法測量輻射強度的優越性,也從另一個角度反應了隨著計數前時間的逐漸減小,雜質時間在其中的比重越來越大,對測量結果的影響也就越來越嚴重,盡可能的減小雜質時間在Time-To-Count方法輻射測量特別是測量高強度輻射中是關鍵的。筆者用示波器測出此輻射儀器的雜質時間約為6.5 u S,所以在計算定時器值的時候減去這個雜質時間,可以增加計數前時間的精確度。通過實驗得出,在標定儀器的K值時,應該在照射量率較低的條件下行,而測得的計數前時間是否精確則需要在照射量率較高的條件下通過儀器標定來檢驗。這是因為在照射量率較低時,計數前時間較大,雜質時間對測量結果的影響不明顯,數據線斜率較穩定,適宜于確定標定系數K值,而在照射量率較高時,計數前時間很小,雜質時間對測量結果的影響較大,可以明顯的在數據線上反映出來,從而可以很好的反應出儀器的性能與量程。實驗證明了Time-To-Count測量方法中最為關鍵的環節就是如何對計數前時間進行精確測量。經過對大量實驗數據的分析,得到計數前時間中的雜質時間可分為硬件雜質時間和軟件雜質時間,并以軟件雜質時間為主,通過對程序進行合理優化,軟件雜質時間可以通過程序的改進而減少,甚至可以用數學補償的方法來抵消,從而可以得到比較精確的計數前時間,以此得到較精確的輻射強度值。對于本輻射儀,用戶可以選擇不同的工作模式來進行測量,當輻射場較弱時,通常采用規定次數測量的方式,在輻射場較強時,應該選用定時測量的方式。因為,當輻射場較弱時,如果用規定次數測量的方式,會浪費很多時間來采集足夠的脈沖信號。當輻射場較強時,由于輻射粒子很多,產生脈沖的頻率就很高,規定次數的測量會加大測量誤差,當選用定時測量的方式時,由于時間的相對加長,所以記錄的粒子數就相對的增加,從而提高儀器的測量精度。通過調研國內外先進核輻射測量儀器的發展現狀,了解到了目前最新的核輻射總量測量技術一Time-To-Count理論及其應用情況。論證了該新技術的理論原理,根據此原理,結合高速處理器ARM7 LPC2132,對以G-計數管為探測元件的Time-To-Count輻射測量儀進行設計。論文以實驗的方法論證了Time-To-Count原理測量核輻射方法的科學性,該輻射儀的量程和精度均優于以前以脈沖計數為基礎理論的MCS-51核輻射測量儀。該輻射儀具有量程寬、精度高、易操作、用戶界面友好等優點。用戶可以定期的對儀器的標定,來減小由于電子元件的老化對低儀器性能參數造成的影響,通過Time-To-Count測量方法的使用,可以極大拓寬G-M計數管的量程。就儀器中使用的J33型G-M計數管而言,G-M計數管廠家參考線性測量范圍約為50 u R/h到5000 u R/h,而用了Time-To-Count測量方法后,結合高速微處理器ARM7 LPC2132,此核輻射測量儀的量程為20 u R/h至1R/h。在允許的誤差范圍內,核輻射儀的量程比以前基于MCS-51的輻射儀提高了近200倍,而且精度也比傳統的脈沖計數方法要高,測量結果的線性程度也比傳統的方法要好。G-M計數管的使用壽命被大大延長。 綜上所述,本文取得了如下成果:對國內外Time-To-Count方法的研究現狀進行分析,指出了Time-To-Count測量方法的基本原理,并對Time-T0-Count方法理論進行了分析,推導出了計數前時間和兩個相鄰輻射粒子時間間隔之間的關系,從數學的角度論證了Time-To-Count方法的科學性。詳細說明了基于ARM 7 LPC2132的Time-To-Count輻射測量儀的硬件設計、軟件編程的過程,通過高速微處理芯片LPC2132的使用,成功完成了對基于MCS-51單片機的Time-To-Count測量儀的改進。改進后的輻射儀器具有量程寬、精度高、易操作、用戶界面友好等特點。本論文根據實驗結果總結出了Time-To-Count技術中的幾點關鍵因素,如:處理器的頻率、計數前時間、雜質時間、采樣次數和測量時間等,重點分析了雜質時間的組成以及引入雜質時間的主要因素等,對國內核輻射測量儀的研究具有一定的指導意義。
標簽: TimeToCount ARM 輻射測量儀
上傳時間: 2013-06-24
上傳用戶:pinksun9
遙測系統由發射機、發射天線、接收天線、接收機組成.就遙測發射系統而言,傳統的模擬調制已經很成熟,模擬發射機是利用調制信號的變化來控制變容二極管的結電容容值的變化,從而改變壓控振蕩器的震蕩頻率來實現調頻;模擬調制碼速率、調制頻偏都受變容二極管特性的限制,模擬調制功能單一、調制方式不可重組、單個系統調制頻率不可改變,無法滿足頻率多變的需求;隨著高速器件和軟件無線電技術的發展,數字調制發射機具有調制中心頻率可調、頻偏可編程、調制方式可重組、調制碼速率高、可實現較高的頻響、可以與編碼器合并擴展功能很強等優點,成為今后發射機的發展主流.本論文討論了如何利用現場可編程器件FPGA結合Max+plusⅡ及VHDL語言,在遙測系統中實現了DDS+PLL+SSB模式的數字調制發射機.數字發射機設計主要包括方案選擇、系統設計、硬件電路實現及VHDL設計四個部分.論文中首先分析了目前遙測系統中使用的模擬調制發射機的不足及數字調制發射機的優點,確定了發射機的設計方案;第二章介紹了電子設計自動化工具及數字電路設計方法;第三章詳細討論了組成發射機的各個部分的原理設計;第四章著重討論了各個部分的硬件電路實現、VHDL實現部分及設計的測試結果;最后總結了設計中需要進一步研究的問題.
上傳時間: 2013-04-24
上傳用戶:程嬰sky
FPGA作為近年來集成電路發展中最快的分支之一,有關它的研究和應用得到了迅速的發展。傳統的FPGA采用靜態配置的方法,所以在它的應用生命周期中,它的功能就不能夠再改變,除非重新配置。動態重配置系統在系統工作的過程中改變FPGA的結構,包括全局重配置和局部重配置。其中的局部動態重配置系統有著ASIC以及靜態配置FPGA無法比擬的優勢。而隨著支持局部位流配置以及動態配置的商用FPGA的推出,使對局部動態重配置系統和應用的研究有了最基本的硬件支撐條件。而Internet作為無比強大的網絡已經滲入到各種應用領域之中。 本文首先提出了一個完整的基于Internet的FPGA局部動態可重配置系統的方案。然后針對方案的各個組成部分,分別進行了描述。首先是介紹了FPGA的基本概況,包括它的發展歷史、結構、應用領域、發展趨勢等。然后介紹了對一個包含局部動態重配置模塊的FPGA系統的設計過程,包括重配置模塊的定義、設計的流程、局部位流的產生等。接下來對.FPGA的配置方法以及配置解決方案進行描述,包括幾種可選擇的配置模式,其中有一些適用于靜態配置,另外一些可以用于動態局部配置,.以及作為一個系統的配置解決方案。最后系統要求從Internet服務器上下載重配置模塊的位流并且完成對FPGA的配置,根據這個要求,我們設計了相應的嵌入式解決方案,包括如何設計一個基于VxWorks的嵌入式應用軟件實現FTP功能,并說明如何通過JTAGG或者ICAP接口由嵌入式CPU完成對FPGA的局部配置。
上傳時間: 2013-04-24
上傳用戶:william345
將客戶原始文件轉換為GERBER文件是電路板廠的制前工程師必定的程序,但如何保證轉換后的GERBER文件與客戶的設計意圖一致?如果轉換的GERBER文件錯了,不論您怎么處理,做出來的PCB仍然是錯誤的。所以,在轉換GERBER這一步驟絕對不允許出錯,否則以后的工作就會不僅僅是白費工夫,并且是吃力不討好。 作為PCB的設計人員,是否常常被PCB制板廠投訴自己提供的資料無法正常打開?作為PCB制板廠的CAM人員是否又常常因為客戶提供的資料不統一而延誤產品的加工進度呢? 這到底是誰惹得禍?原來在PCB行業中有眾多EDA軟件,并且是互不兼容,導致PCB制板廠的CAM人員無法辨認客戶提供的資料是何種軟件設計的;為了避免類似的情況出現,故必須將各種CAD格式的文件轉換成一種統一的格式,那就是GERBER格式。 本教材收錄了PCB行業中最常用的CAD軟件(如:PowerPCB、Protel v2.5、Protel 99SE、AutoCAD2004)進行詳盡解說轉換GERBER的步驟及注意事項。隨著軟件版本不斷更新,編者于2006年應網友要求,增加PADS2005 sp2、Protel DXP、Allegro 15.2、P-CAD2004等CAD軟件轉換GERBER的步驟及注意事項。
上傳時間: 2013-04-24
上傳用戶:sowhat
大家都知道理做PCB板就是把設計好的原理圖變成一塊實實在在的PCB電路板,請別小看這一過程,有很多原理上行得通的東西在工程中卻難以實現,或是別人能實現的東西另一些人卻實現不了,因此說做一塊PCB板不難,但要做好一塊PCB板卻不是一件容易的事情。 微電子領域的兩大難點在于高頻信號和微弱信號的處理,在這方面PCB制作水平就顯得尤其重要,同樣的原理設計,同樣的元器件,不同的人制作出來的PCB就具有不同的結果,那么如何才能做出一塊好的PCB板呢?根據我們以往的經驗,想就以下幾方面談談自己的看法:
標簽: pcb
上傳時間: 2013-11-18
上傳用戶:拔絲土豆
單片機的IO口控制是單片機初學者最為關心的問題,如何快速學會使用IO是初學者最為困難的地方。 眾多的教科書上面介紹了很多IO的原理,這些長篇大論讓很多初學者看起來難以理解,同時也會止步于單片機門外。我們現在所要學習的使用IO就是很簡單的使用就可以了,IO無非就是4種狀態,輸出為高、輸出為低、輸入為高、輸入為低。 我們只要把握這四個方面就可以了,先看看我們的單片機接口,單片機共有32個io。分別為P0、P1、P2、P3口,P0口如果當作IO來使用時,必須要使用上拉電阻,因為51單片機內部沒有拉這一功能。
上傳時間: 2013-11-05
上傳用戶:6546544
大家都知道理做PCB板就是把設計好的原理圖變成一塊實實在在的PCB電路板,請別小看這一過程,有很多原理上行得通的東西在工程中卻難以實現,或是別人能實現的東西另一些人卻實現不了,因此說做一塊PCB板不難,但要做好一塊PCB板卻不是一件容易的事情。 微電子領域的兩大難點在于高頻信號和微弱信號的處理,在這方面PCB制作水平就顯得尤其重要,同樣的原理設計,同樣的元器件,不同的人制作出來的PCB就具有不同的結果,那么如何才能做出一塊好的PCB板呢?根據我們以往的經驗,想就以下幾方面談談自己的看法:
標簽: pcb
上傳時間: 2013-10-10
上傳用戶:wwwwwen5
信使小精靈,是一個簡易的聊天工具。主要是演示了網絡編程的主要步驟。本程序使用封裝好的函數庫,使得應用層不需要考慮網絡消息是如何被接受和發送的,也不需要考慮數據粘包和丟包的刺手問題,你只要調用相應的函數就可以了。函數庫為你做好了這些工作。你只需要定義自己的協議頭和消息結構體,定義好網絡消息的回調函數就可以了。
上傳時間: 2015-04-15
上傳用戶:英雄
bison源代碼.bison 是替代yacc的語法分析程序生成器. yacc是 Yet Another Compiler Compiler的縮寫. bison又是什么吶 是一個生成可以分析文本文件結構的程序的程序. 用戶不用直接編寫程序而只用確定好如何分析這些文本文件的規則就可以了. 這種文本結構應用的例子舉不勝舉, 其中一個就是計算器(calculator).
標簽: bison Compiler yacc Another
上傳時間: 2013-12-22
上傳用戶:ommshaggar
(pdg格式,請用BXViewer打開)Java3D是由SUN公司推出的、面向Internet的三維動畫程序語言。通過在網頁上插入用Java3D編寫的Applet,就能讓瀏覽網頁的用戶感受到逼真的三維動畫效果。全書共分10章。第1章對Java3D作了全面的介紹;第2章和第3章講述如何構建基本的三維形體并用它們組合成復雜物體;第4章講述怎樣在Java3D中利用AutoCAD、3DS等軟件設計的形體;第5章~第7章分別介紹建立真實的三維環境所必需的燈光、材質、紋理、背景、霧效和聲音等要素;第8章闡述如何用鼠標、鍵盤控制三維形體的運動;第9章講解如何讓三維形體按照預定的軌跡運動以及如何優化形體的運動性能;第10章給出了一個綜合實例,它將深化讀者對Java3D的認識。本書附帶的光盤中提供了書中全部源程序、常用的開發工具和重要的技術資料。本書由有豐富的Java3D開發經驗的清華大學研究人員編寫。它不是一本Java3D的語法書或使用手冊,而是作者對自己實踐經驗的提煉。本書用大量的實例生動地闡述編程要點,讓讀者動態地掌握編程方法,而非靜態地學習編程規則;本書著重介紹應用編程經常會用到的一些技術,但并不面面俱到,目的是讓讀者盡可能簡潔地掌握編程的要旨。本書適用于有一定Java基礎的網絡編程愛好者和開發人員。
標簽: Java3D BXViewer Internet Applet
上傳時間: 2014-01-23
上傳用戶:JIUSHICHEN