近年來,隨著汽車工業(yè)的迅速發(fā)展,環(huán)境污染、全球變暖、能源短缺的壓力使傳統(tǒng)的內(nèi)燃機(jī)汽車面臨前所未有的挑戰(zhàn),燃料電池電動(dòng)汽車已成為汽車工業(yè)新的熱點(diǎn)。由于燃料電池輸出特性的特殊性,輸出端必須連接DC/DC變換器,使之與驅(qū)動(dòng)器配合。因此,DC/DC變換器是燃料電池電動(dòng)汽車的關(guān)鍵零部件之一。 本論文主要對(duì)燃料電池電動(dòng)轎車FCEV(Fuel Cell Electric Vehicle)用DC/DC變換器的主電路拓?fù)浣Y(jié)構(gòu)、參數(shù)設(shè)計(jì)及電磁兼容(EMC)問題進(jìn)行了研究。重點(diǎn)針對(duì)升降壓和雙向DC/DC變換器進(jìn)行分析研究。 首先介紹分析了幾種傳統(tǒng)升降壓直流變換器的工作原理和優(yōu)缺點(diǎn)。針對(duì)燃料電池的特性和電動(dòng)汽車對(duì)升降壓DC/DC變換器的性能指標(biāo)要求,分析比較了非隔離式直流變換器的一些優(yōu)點(diǎn)和缺點(diǎn),提出了Buck-Boost級(jí)聯(lián)的升降壓主電路方案并提出相關(guān)的控制策略。然后運(yùn)用模擬仿真軟件MATLAB仿真分析了控制策略的正確性。 其次分析研究了雙向DC/DC變換器的應(yīng)用與設(shè)計(jì),綜合比較現(xiàn)有的各種隔離與非隔離方案,結(jié)合車用要求,選擇了非隔離式的Buck-Boost拓?fù)洹a槍?duì)其工作原理、特點(diǎn)進(jìn)行了雙向DC/DC變換器主電路與控制電路的設(shè)計(jì)研究,重點(diǎn)研究其過渡過程的控制策略。在利用MATLAB進(jìn)行各種過渡過程的仿真分析的基礎(chǔ)上,選取了最佳的過渡控制方案。并利用該控制策略編制DSP控制程序,制作了小功率1kW數(shù)字控制雙向DC/DC變換器。 最后深入討論了DC/DC變換器中的電磁兼容問題。分析了DC/DC變換器主電路中存在的主要干擾源、干擾產(chǎn)生的機(jī)理以及干擾傳播途徑,然后以此出發(fā),重點(diǎn)討論了各種抑制電磁騷擾(EMI)和電磁抗干擾(EMS)的方法及措施,給出具體方案。
上傳時(shí)間: 2013-05-24
上傳用戶:hanli8870
高速電機(jī)由于轉(zhuǎn)速高、體積小、功率密度高,在渦輪發(fā)電機(jī)、渦輪增壓器、高速加工中心、飛輪儲(chǔ)能、電動(dòng)工具、空氣壓縮機(jī)、分子泵等許多領(lǐng)域得到了廣泛的應(yīng)用。永磁無刷直流電機(jī)由于效率高、氣隙大、轉(zhuǎn)子結(jié)構(gòu)簡單,因此特別適合高速運(yùn)行。高速永磁無刷直流電機(jī)是目前國內(nèi)外研究的熱點(diǎn),其主要問題在于:(1)轉(zhuǎn)子機(jī)械強(qiáng)度和轉(zhuǎn)子動(dòng)力學(xué);(2)轉(zhuǎn)子損耗和溫升。本文針對(duì)高速永磁無刷直流電機(jī)主要問題之一的轉(zhuǎn)子渦流損耗進(jìn)行了深入分析。轉(zhuǎn)子渦流損耗是由定子電流的時(shí)間和空間諧波以及定子槽開口引起的氣隙磁導(dǎo)變化所產(chǎn)生的。首先通過優(yōu)化定子結(jié)構(gòu)、槽開口和氣隙長度的大小來降低電流空間諧波和氣隙磁導(dǎo)變化所產(chǎn)生的轉(zhuǎn)子渦流損耗;通過合理地增加繞組電感以及采用銅屏蔽環(huán)的方法來減小電流時(shí)間諧波引起的轉(zhuǎn)子渦流損耗。其次對(duì)轉(zhuǎn)子充磁方式和轉(zhuǎn)子動(dòng)力學(xué)進(jìn)行了分析。最后制作了高速永磁無刷直流電機(jī)樣機(jī)和控制系統(tǒng),進(jìn)行了空載和負(fù)載實(shí)驗(yàn)研究。論文主要工作包括: 一、采用解析計(jì)算和有限元仿真的方法研究了不同的定子結(jié)構(gòu)、槽開口大小、以及氣隙長度對(duì)高速永磁無刷直流電機(jī)轉(zhuǎn)子渦流損耗的影響。對(duì)于2極3槽集中繞組、2極6槽分布疊繞組和2極6槽集中繞組的三臺(tái)電機(jī)的定子結(jié)構(gòu)進(jìn)行了對(duì)比,利用傅里葉變換,得到了分布于定子槽開口處的等效電流片的空間諧波分量,然后采用計(jì)及轉(zhuǎn)子集膚深度和渦流磁場(chǎng)影響的解析模型計(jì)算了轉(zhuǎn)子渦流損耗,通過有限元仿真對(duì)解析計(jì)算結(jié)果加以驗(yàn)證。結(jié)果表明:3槽集中繞組結(jié)構(gòu)的電機(jī)中含有2次、4次等偶數(shù)次空間諧波分量,該諧波分量在轉(zhuǎn)子中產(chǎn)生大量的渦流損耗。采用有限元仿真的方法研究了槽開口和氣隙長度對(duì)轉(zhuǎn)子渦流損耗的影響,在空載和負(fù)載狀態(tài)下的研究結(jié)果均表明:隨著槽開口的增加或者氣隙長度的減小,轉(zhuǎn)子損耗隨之增加。因此從減小高速永磁無刷電機(jī)轉(zhuǎn)子渦流損耗的角度考慮,2極6槽的定子結(jié)構(gòu)優(yōu)于2極3槽結(jié)構(gòu)。 二、高速永磁無刷直流電機(jī)額定運(yùn)行時(shí)的電流波形中含有大量的時(shí)間諧波分量,其中5次和7次時(shí)間諧波分量合成的電樞磁場(chǎng)以6倍轉(zhuǎn)子角速度相對(duì)轉(zhuǎn)子旋轉(zhuǎn),11次和13次時(shí)間諧波分量合成的電樞磁場(chǎng)以12倍轉(zhuǎn)子角速度相對(duì)轉(zhuǎn)子旋轉(zhuǎn),這些諧波分量與轉(zhuǎn)子異步,在轉(zhuǎn)子保護(hù)環(huán)、永磁體和轉(zhuǎn)軸中產(chǎn)生大量的渦流損耗,是轉(zhuǎn)子渦流損耗的主要部分。首先研究了永磁體分塊對(duì)轉(zhuǎn)子渦流損耗的影響,分析表明:永磁體的分塊數(shù)和透入深度有關(guān),對(duì)于本文設(shè)計(jì)的高速永磁無刷直流電機(jī),當(dāng)永磁體分塊數(shù)大于12時(shí),永磁體分塊才能有效地減小永磁體中的渦流損耗;反之,永磁體分塊會(huì)使永磁體中的渦流損耗增加。為了提高轉(zhuǎn)子的機(jī)械強(qiáng)度,在永磁體表面通常包裹一層高強(qiáng)度的非磁性材料如鈦合金或者碳素纖維等。分析了不同電導(dǎo)率的包裹材料對(duì)轉(zhuǎn)子渦流損耗的影響。然后利用渦流磁場(chǎng)的屏蔽作用,在轉(zhuǎn)子保護(hù)環(huán)和永磁體之間增加一層電導(dǎo)率高的銅環(huán)。有限元分析表明:盡管銅環(huán)中會(huì)產(chǎn)生渦流損耗,但正是由于銅環(huán)良好的導(dǎo)電性,其產(chǎn)生的渦流磁場(chǎng)抵消了氣隙磁場(chǎng)的諧波分量,使永磁體、轉(zhuǎn)軸以及保護(hù)環(huán)中的損耗顯著下降,整體上降低了轉(zhuǎn)子渦流損耗。分析了不同的銅環(huán)厚度對(duì)轉(zhuǎn)子渦流損耗的影響,研究表明轉(zhuǎn)子各部分的渦流損耗隨著銅屏蔽環(huán)厚度的增加而減小,當(dāng)銅環(huán)的厚度達(dá)到6次時(shí)間諧波的透入深度時(shí),轉(zhuǎn)子損耗減小到最小。 三、對(duì)于給定的電機(jī)尺寸,設(shè)計(jì)了兩臺(tái)電感值不同的高速永磁無刷直流電機(jī),通過研究表明:電感越大,電流變化越平緩,電流的諧波分量越低,轉(zhuǎn)子渦流損耗越小,因此通過合理地增加繞組電感能有效的降低轉(zhuǎn)子渦流損耗。 四、研究了高速永磁無刷直流電機(jī)的電磁設(shè)計(jì)和轉(zhuǎn)子動(dòng)力學(xué)問題。對(duì)比分析了平行充磁和徑向充磁對(duì)高速永磁無刷直流電機(jī)性能的影響,結(jié)果表明:平行充磁優(yōu)于徑向充磁。設(shè)計(jì)并制作了兩種不同結(jié)構(gòu)的轉(zhuǎn)子:單端式軸承支撐結(jié)構(gòu)和兩端式軸承支撐結(jié)構(gòu)。對(duì)兩種結(jié)構(gòu)進(jìn)行了轉(zhuǎn)子動(dòng)力學(xué)分析,實(shí)驗(yàn)研究表明:由于轉(zhuǎn)子設(shè)計(jì)不合理,單端式軸承支撐結(jié)構(gòu)的轉(zhuǎn)子轉(zhuǎn)速達(dá)到40,000rpm以上時(shí),保護(hù)環(huán)和定子齒部發(fā)生了摩擦,破壞了轉(zhuǎn)子動(dòng)平衡,導(dǎo)致電機(jī)運(yùn)行失敗,而兩端式軸承支撐結(jié)構(gòu)的轉(zhuǎn)子成功運(yùn)行到100,000rpm以上。 五、最后制作了平行充磁的高速永磁無刷直流電機(jī)樣機(jī)和控制系統(tǒng),進(jìn)行了空載和負(fù)載實(shí)驗(yàn)研究。對(duì)比研究了PWM電流調(diào)制和銅屏蔽環(huán)對(duì)轉(zhuǎn)子損耗的影響,研究表明:銅屏蔽環(huán)能有效的降低轉(zhuǎn)子渦流損耗,使轉(zhuǎn)子損耗減小到不加銅屏蔽環(huán)時(shí)的1/2;斬波控制會(huì)引入高頻電流諧波分量,使得轉(zhuǎn)子渦流損耗增加。通過計(jì)算繞組反電勢(shì)系數(shù)的方法,得到了不同控制方式下帶銅屏蔽環(huán)和不帶銅屏蔽環(huán)轉(zhuǎn)子永磁體溫度。采用簡化的暫態(tài)溫度場(chǎng)有限元模型分析了轉(zhuǎn)子溫升,有限元分析和實(shí)驗(yàn)計(jì)算結(jié)果基本吻合,驗(yàn)證了銅屏蔽環(huán)的有效性。
標(biāo)簽: 無刷直流 電機(jī)轉(zhuǎn)子 渦流損耗
上傳時(shí)間: 2013-05-18
上傳用戶:zl123!@#
電流互感器是電力系統(tǒng)中最重要的高壓設(shè)備之一。它被廣泛應(yīng)用于繼電保護(hù)、系統(tǒng)監(jiān)測(cè)、電力系統(tǒng)分析之中,關(guān)系到電力系統(tǒng)的安全性與可靠性。隨著電力系統(tǒng)向高電壓、大容量和數(shù)字化方向的發(fā)展,傳統(tǒng)的電磁式電流互感器很難滿足電力系統(tǒng)發(fā)展的進(jìn)一步要求。因此,研究基于計(jì)算機(jī)技術(shù)、現(xiàn)代通信技術(shù)及數(shù)字處理技術(shù)的以電子式電流互感器(ECT)為代表的、新型的高精度電流互感器成了大勢(shì)所趨。在電子式電流互感器的應(yīng)用研究中,ECT高壓側(cè)的電源問題是關(guān)鍵技術(shù)之一。 本文對(duì)國內(nèi)外電子式電流互感器發(fā)展的現(xiàn)狀進(jìn)行了描述,并對(duì)已有的電子式電流互感器的高壓側(cè)供能方式進(jìn)行了總結(jié)。論文根據(jù)本課題組所研究的電子式電流互感器的特點(diǎn),對(duì)電子式電流互感器的高壓側(cè)供能系統(tǒng)的設(shè)計(jì)進(jìn)行了研究,提出一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法。 本文首先設(shè)計(jì)了一種應(yīng)用于高壓電子式電流互感器的數(shù)字化激光電源,包括大功率激光器的驅(qū)動(dòng)電路、基于16位低功耗單片機(jī)MSP430的過流保護(hù)電路和恒溫控制電路、輸入電路、顯示電路、以及高壓側(cè)變換電路。其供能部分由低電位側(cè)的大功率激光光源產(chǎn)生激光輸出,經(jīng)光纖將激光能量傳輸?shù)竭_(dá)高電位側(cè)的光電池,再由光電池進(jìn)行光功率到電功率的光電變換后,形成滿足光電電流互感器傳感頭部分所需的電壓輸出。實(shí)驗(yàn)結(jié)果表明,該電源可以提供穩(wěn)定的6V電壓,其功率不少于300mW。 本文又設(shè)計(jì)了了一種應(yīng)用于高壓側(cè)電子裝置中的CT電源方案:通過一個(gè)特制的電流互感器(CT),直接從高壓側(cè)一次母線電流獲取電能,憑借在CT和整流橋之間串聯(lián)的一個(gè)電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。實(shí)驗(yàn)結(jié)果表明,該電源能輸出穩(wěn)定的5V直流電壓,紋波不超過25mV。 最后,本文提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。
上傳時(shí)間: 2013-06-05
上傳用戶:chuandalong
電力系統(tǒng)頻率性能是電力系統(tǒng)主要評(píng)價(jià)指標(biāo)之一,維持系統(tǒng)頻率穩(wěn)定對(duì)用戶端和發(fā)電端設(shè)備具有重要意義。正常運(yùn)行時(shí)電力系統(tǒng)的頻率應(yīng)保持在.50±0.2Hz范圍內(nèi),電網(wǎng)頻率若超出該范圍將對(duì)用戶端和發(fā)電端設(shè)備產(chǎn)生不利影響,例如使異步電動(dòng)機(jī)超過或低于額定轉(zhuǎn)速,從而對(duì)設(shè)備或產(chǎn)品造成不利影響。 先前,由于采用相對(duì)落后的A標(biāo)準(zhǔn)和聯(lián)絡(luò)線控制模式,為了遵守A標(biāo)準(zhǔn)而避免功率反調(diào)和控制無意交換電量避免被罰款,各控制區(qū)域?qū)Ρ緟^(qū)域內(nèi)發(fā)電廠的一次調(diào)節(jié)性能不很關(guān)注,也沒有相應(yīng)的評(píng)價(jià)標(biāo)準(zhǔn)和管理規(guī)定,甚至出于自身利益的考慮允許發(fā)電廠將其一次調(diào)節(jié)功能予以閉鎖。 CPS標(biāo)準(zhǔn)的實(shí)施,聯(lián)絡(luò)線控制模式采用先進(jìn)的TBC模式,一次調(diào)節(jié)性能成為影響各控制區(qū)域評(píng)價(jià)指標(biāo)好壞的因素之一。各控制區(qū)域?qū)Ρ緟^(qū)域內(nèi)電廠一次調(diào)節(jié)能力開始關(guān)注,其調(diào)節(jié)性能的評(píng)價(jià)研究成為熱點(diǎn)。 前期工作提出了一種新的評(píng)價(jià)指標(biāo)。該指標(biāo)依據(jù)電網(wǎng)頻率和電廠功率這兩個(gè)隨機(jī)變量之間的相關(guān)系數(shù)來定量分析調(diào)節(jié)是否對(duì)頻率的恢復(fù)有利。這個(gè)新的考核指標(biāo)有如下的特點(diǎn):第一,這是一種基于概率的用長期的實(shí)時(shí)數(shù)據(jù)累計(jì)反映機(jī)組一次調(diào)頻能力的指標(biāo);第二,它能正確反映發(fā)電機(jī)組的一次調(diào)頻投切狀態(tài)及調(diào)節(jié)能力。 通過matlab仿真表明,前期工作所提出的新指標(biāo)對(duì)發(fā)電機(jī)組的各項(xiàng)指標(biāo)是有效的,然而前期工作所提出的新指標(biāo)尚有數(shù)個(gè)問題需要解決。本文著重解決其中的均值時(shí)間長度問題和機(jī)組一次功率的獲取問題。其中關(guān)于機(jī)組一次功率的獲取由于機(jī)組在執(zhí)行二次調(diào)節(jié)時(shí)是一二次聯(lián)合動(dòng)作的,而且最終的動(dòng)作執(zhí)行者同為汽輪機(jī)的進(jìn)氣閥門(火電機(jī)組的情況),故一直是一個(gè)較難解決的問題。本文主要從機(jī)組二次調(diào)解的目標(biāo)曲線出發(fā),并做出適當(dāng)調(diào)整,得到所需的一次功率。在指標(biāo)的均值時(shí)間長度方面主要是針對(duì)功率和頻率采樣時(shí)間、頻率的傳輸延時(shí)和SCADA系統(tǒng)的壞數(shù)據(jù)這三方面的影響,綜合設(shè)定一個(gè)較為合理的時(shí)間長度。
上傳時(shí)間: 2013-07-03
上傳用戶:sowhat
電氣化鐵道牽引網(wǎng)在網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)、電氣元件上具有特殊性,開展數(shù)學(xué)模型和電氣參數(shù)研究對(duì)掌握其電氣性能具有重要意義。 本文主要介紹了電氣化鐵道牽引網(wǎng)基波與諧波的模型建立與電氣參數(shù)計(jì)算。 借用電力系統(tǒng)中的成熟計(jì)算方法,并結(jié)合牽引網(wǎng)的拓?fù)浣Y(jié)構(gòu)和導(dǎo)線的特殊性,闡述了多導(dǎo)體傳輸線的串聯(lián)阻抗和并聯(lián)導(dǎo)納矩陣的計(jì)算方法,給出了計(jì)算實(shí)例。 各種供電方式的牽引網(wǎng)都可等效成多導(dǎo)體傳輸線的供電網(wǎng)絡(luò),網(wǎng)絡(luò)上的各種電氣參數(shù)均可視為串聯(lián)元件和并聯(lián)元件。牽引網(wǎng)的均勻多導(dǎo)體傳輸線采用等值Ⅱ型電路,對(duì)其它各種串聯(lián)與并聯(lián)元件也分別建模。 用C#語言編制了牽引網(wǎng)模型仿真計(jì)算軟件,實(shí)現(xiàn)了諧波在牽引網(wǎng)中的分布計(jì)算。為計(jì)算程序設(shè)計(jì)了良好的人機(jī)界面,通過界面可以完成牽引網(wǎng)的參數(shù)輸入與外部數(shù)據(jù)讀取,計(jì)算結(jié)果再用.csv格式輸出。其中,詳細(xì)介紹了LU三角算法。 最后,結(jié)合京哈線薊縣南牽引變電所供電區(qū)段高次諧波諧振測(cè)試,分析了牽引網(wǎng)參數(shù)對(duì)高次諧波諧振的影響,說明了諧振的原因并給出了治理措施。利用程序進(jìn)行了仿真計(jì)算,驗(yàn)證了程序的可用性。
上傳時(shí)間: 2013-07-23
上傳用戶:hooooor
無刷直流電機(jī)是一種性能優(yōu)越、應(yīng)用前景廣闊的電機(jī),應(yīng)用傳統(tǒng)的控制理論對(duì)其進(jìn)行控制系統(tǒng)設(shè)計(jì)、分析的技術(shù)已經(jīng)相對(duì)成熟,在此基礎(chǔ)上研發(fā)出的各種調(diào)速系統(tǒng)已經(jīng)在工業(yè)生產(chǎn)中獲得廣泛應(yīng)用。因此,無刷直流電機(jī)的進(jìn)一步推廣應(yīng)用,在很大程度上依賴于對(duì)一些先進(jìn)控制策略的研究。 為了改進(jìn)無刷直流電機(jī)調(diào)速系統(tǒng)的控制性能,本文基于灰色控制理論建立了無刷直流電機(jī)灰色PID控制調(diào)速系統(tǒng)模型。常規(guī)的PID控制以其結(jié)構(gòu)簡單、可靠性高、易于工程實(shí)現(xiàn)等優(yōu)點(diǎn)至今仍被廣泛采用。在系統(tǒng)模型參數(shù)變化不大的情況下,PID控制性能優(yōu)良,但無刷直流電機(jī)是一種多變量、非線性的控制系統(tǒng),傳統(tǒng)的PID控制器難以克服電機(jī)自身參數(shù)不確定和擾動(dòng)帶來的轉(zhuǎn)速偏差問題,無法實(shí)現(xiàn)精確快速的控制。灰色控制器是在繼承經(jīng)典PID控制器不依賴于對(duì)象模型優(yōu)點(diǎn)的基礎(chǔ)上,通過改進(jìn)經(jīng)典PID固有缺陷而形成的新型控制器,性能優(yōu)良并且算法簡單。該控制器設(shè)計(jì)不需要建立電機(jī)的精確數(shù)學(xué)模型,對(duì)參數(shù)變化和負(fù)載擾動(dòng)不敏感。系統(tǒng)較好地實(shí)現(xiàn)了給定速度參考模型的自適應(yīng)跟蹤,結(jié)構(gòu)簡單,能適應(yīng)環(huán)境變化,具有較強(qiáng)的魯棒性。 本文以灰色系統(tǒng)理論為基礎(chǔ),把無刷直流電機(jī)的數(shù)學(xué)模型分為確定部分與不確定部分,對(duì)被控對(duì)象的不確定部分建立灰色模型,進(jìn)行灰色預(yù)估補(bǔ)償,使控制系統(tǒng)的灰量得到一定程度的白化。對(duì)所提出的無刷直流電機(jī)灰色PID控制調(diào)速系統(tǒng)進(jìn)行了仿真,對(duì)仿真結(jié)果給出理論分析;以TMS320F2812型DSP為核心控制器建立了無刷直流電機(jī)調(diào)速驅(qū)動(dòng)系統(tǒng)。仿真和實(shí)驗(yàn)結(jié)果表明,基于灰色PID控制算法的無刷直流電機(jī)調(diào)速系統(tǒng)受電機(jī)參數(shù)變化影響較小,具有較高的控制精度和魯棒性,表現(xiàn)出優(yōu)良的動(dòng)、靜態(tài)性能。
標(biāo)簽: 控制 無刷 直流電機(jī)調(diào)速
上傳時(shí)間: 2013-04-24
上傳用戶:lyy1234
超級(jí)電容器是一種具有高能量密度的新型儲(chǔ)能元器件,它可提供超大功率并具有超長的壽命,是一種兼?zhèn)潆娙莺碗姵靥匦缘男滦驮诨旌蟿?dòng)力電動(dòng)車、脈沖電源系統(tǒng)和應(yīng)急電源等領(lǐng)域具有廣泛的應(yīng)用前景。對(duì)于大功率儲(chǔ)能系統(tǒng)來說,為了滿足容量和電壓等級(jí)的需要,一般是由多個(gè)超級(jí)電容器串聯(lián)和并聯(lián)的組合方式構(gòu)成。然而超級(jí)電容器在串并聯(lián)使用時(shí),單體電容器參數(shù)的分散性是制約其壽命和可靠性的主要因素。因此,為了提高儲(chǔ)能效率,對(duì)超級(jí)電容器組合進(jìn)行電壓均衡管理具有十分重要的意義。 本文針對(duì)超級(jí)電容器串聯(lián)使用時(shí)充電電壓的均衡問題,對(duì)超級(jí)電容器組充放電均衡技術(shù)進(jìn)行了研究,通過對(duì)現(xiàn)有均衡技術(shù)的分析和討論,確定采用單電容均壓方案,并利用DSP控制技術(shù),設(shè)計(jì)了一個(gè)基于DSP控制的超級(jí)電容組電壓均衡系統(tǒng),解決超級(jí)電容器串聯(lián)電壓均衡問題。該系統(tǒng)主要由參數(shù)采集、PWM信號(hào)輸出、開關(guān)網(wǎng)絡(luò)控制等部分組成。系統(tǒng)以DSP為控制核心,采用了一只電解電容器作為中間電容傳遞能量,通過實(shí)時(shí)電壓、電流及溫度監(jiān)測(cè)將采集到的信號(hào),經(jīng)A/D轉(zhuǎn)換器后,送入DSP處理,系統(tǒng)根據(jù)得到的電壓、電流信息判斷電容的充放電狀態(tài),控制PWM信號(hào)的輸出,進(jìn)而驅(qū)動(dòng)開關(guān)網(wǎng)絡(luò)的切換,使能量在單體電容器之間快速傳遞,從而實(shí)現(xiàn)均壓控制。最后,對(duì)該系統(tǒng)進(jìn)行了仿真和實(shí)驗(yàn)研究,通過對(duì)上述數(shù)據(jù)的分析比較可以看出,采用此種方案進(jìn)行均衡后,超級(jí)電容組單體的電壓在充電過程中達(dá)到了較好的一致性。 本文設(shè)計(jì)的超級(jí)電容組電壓均衡系統(tǒng)用于串聯(lián)超級(jí)電容組的充放電均衡控制,既可實(shí)現(xiàn)靜態(tài)均衡也可實(shí)現(xiàn)動(dòng)態(tài)均衡。與其他均衡方案相比,該系統(tǒng)具有電壓均衡速度快,均衡效果好的優(yōu)點(diǎn)。
標(biāo)簽: 超級(jí)電容器 儲(chǔ)能系統(tǒng) 電壓
上傳時(shí)間: 2013-04-24
上傳用戶:s363994250
在早期階段,直流調(diào)速系統(tǒng)在傳動(dòng)領(lǐng)域中占統(tǒng)治地位。然而,從60年代后期開始,交流電動(dòng)機(jī)在工業(yè)應(yīng)用領(lǐng)域正在取代直流電動(dòng)機(jī),交流傳動(dòng)變得越來越經(jīng)濟(jì)和受歡迎。永磁交流伺服系統(tǒng)作為電氣傳動(dòng)領(lǐng)域的重要組成部分,在工業(yè)、農(nóng)業(yè)、航空航天等領(lǐng)域發(fā)揮越來越重大的作用。永磁同步電動(dòng)機(jī)以其特點(diǎn)廣泛應(yīng)用于中小功率傳動(dòng)場(chǎng)合,成為研究的重要領(lǐng)域。然而,永磁同步電動(dòng)機(jī)具有較大的轉(zhuǎn)動(dòng)脈動(dòng),而對(duì)于這些應(yīng)用場(chǎng)合,轉(zhuǎn)矩平滑通常是基本要求。因此,對(duì)永磁交流伺服系統(tǒng)的應(yīng)用,必須考慮其轉(zhuǎn)矩脈動(dòng)的抑制問題。本文針對(duì)電機(jī)傳動(dòng)系統(tǒng)中參數(shù)變化對(duì)電機(jī)性能的影響,以永磁同步電機(jī)為例,圍繞如何通過參數(shù)辨識(shí)來提高永磁同步電動(dòng)機(jī)的控制性能,借助自行開發(fā)的全數(shù)字永磁交流伺服系統(tǒng)平臺(tái),對(duì)永磁同步電動(dòng)機(jī)的磁場(chǎng)定向控制,參數(shù)辨識(shí),神經(jīng)網(wǎng)絡(luò)和擴(kuò)展卡爾曼濾波在控制系統(tǒng)中的應(yīng)用,抑制轉(zhuǎn)矩脈動(dòng),提高系統(tǒng)性能幾個(gè)方面展開深入的研究。 本文從永磁同步電動(dòng)機(jī)及其控制系統(tǒng)的基本結(jié)構(gòu)出發(fā),對(duì)通過參數(shù)辨識(shí)抑制轉(zhuǎn)矩脈動(dòng)進(jìn)行了較為細(xì)致的分析。針對(duì)不同情況,通過改進(jìn)電機(jī)的控制系統(tǒng),提出了多種參數(shù)辨識(shí)方法。主要內(nèi)容如下: 1、基于定子磁鏈方程,建立了永磁同步電動(dòng)機(jī)的一般數(shù)學(xué)模型。經(jīng)坐標(biāo)變換,得出在靜止兩相(α—β)坐標(biāo)系和旋轉(zhuǎn)兩相(d—q)坐標(biāo)系下永磁同步電動(dòng)機(jī)電壓方程和轉(zhuǎn)矩方程。 2、分析了永磁同步電動(dòng)機(jī)id=0矢量控制系統(tǒng)的工作原理,介紹了永磁同步電動(dòng)基于磁場(chǎng)定向的矢量控制的基本概念。經(jīng)對(duì)永磁同步電動(dòng)機(jī)系統(tǒng)進(jìn)行分析,推導(dǎo)并建立了id=0控制時(shí)整個(gè)電機(jī)系統(tǒng)的數(shù)學(xué)模型。 3、基于超穩(wěn)定性理論的模型參考自適應(yīng)控制原理,設(shè)計(jì)了一種模型參考自適應(yīng)控制系統(tǒng),考慮電機(jī)參數(shù)的時(shí)變性,對(duì)永磁交流伺服系統(tǒng)的繞組電阻和電機(jī)負(fù)載轉(zhuǎn)矩辨識(shí)進(jìn)行了研究,以保持系統(tǒng)的動(dòng)態(tài)性能。利用Matlab/Simulink建立仿真模型,對(duì)控制性能進(jìn)行了驗(yàn)證,仿真實(shí)驗(yàn)證明這種方法的可行性。 4、人工神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的學(xué)習(xí)性能,經(jīng)過訓(xùn)練的多層神經(jīng)網(wǎng)絡(luò)能以任意精度逼近非線性函數(shù),因此為非線性系統(tǒng)辨識(shí)提供了一個(gè)強(qiáng)有力的工具。本章針對(duì)永磁同步電機(jī)提出了一種以電機(jī)輸出轉(zhuǎn)速為目標(biāo)函數(shù)的神經(jīng)網(wǎng)絡(luò)控制方案,同時(shí)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)理論建立和設(shè)計(jì)了負(fù)載轉(zhuǎn)矩?cái)_動(dòng)辨識(shí)的算法以及相應(yīng)的控制系統(tǒng)的補(bǔ)償方法,并應(yīng)用MATLAB軟件進(jìn)行了計(jì)算機(jī)仿真,仿真證明和傳統(tǒng)的控制方法相比,以電機(jī)輸出轉(zhuǎn)速為指導(dǎo)值和目標(biāo)函數(shù)的神經(jīng)網(wǎng)絡(luò)控制方案能有效地提高神經(jīng)網(wǎng)絡(luò)的收斂速度,能有效地改善控制系統(tǒng)的動(dòng)態(tài)響應(yīng),具有跟蹤性能好和魯棒性較強(qiáng)等優(yōu)點(diǎn)。 5、電機(jī)的參數(shù)會(huì)隨著溫升和磁路飽和發(fā)生變化,需進(jìn)行在線實(shí)時(shí)辨識(shí)。本文利用電機(jī)的定子電流、電壓和轉(zhuǎn)速,采用遞推最小二乘法進(jìn)行在線參數(shù)辨識(shí),該方法不需要觀測(cè)的磁鏈信號(hào),消除了磁鏈觀測(cè)和參數(shù)辨識(shí)的耦合。電機(jī)狀態(tài)方程由于存在狀態(tài)變量的乘積項(xiàng),對(duì)電機(jī)參數(shù)辨識(shí)以后,仍然是非線性方程,為了對(duì)電機(jī)狀態(tài)方程進(jìn)行狀態(tài)估計(jì),得到電機(jī)的參數(shù)辨識(shí)值,本文采用擴(kuò)展卡爾曼濾波進(jìn)行狀態(tài)估計(jì),對(duì)以上方法的仿真實(shí)驗(yàn)得到了滿意的結(jié)果。 6、本文基于數(shù)字電機(jī)控制專用DSP自行開發(fā)了全數(shù)字永磁交流伺服系統(tǒng)平臺(tái),通過軟件實(shí)現(xiàn)擴(kuò)展卡爾曼濾波對(duì)電阻和磁鏈的估計(jì),以及基于磁場(chǎng)定向的空間矢量控制算法,獲得了令人滿意的實(shí)驗(yàn)結(jié)果,證明擴(kuò)展卡爾曼濾波算法對(duì)電阻和磁鏈的實(shí)時(shí)估計(jì)是很準(zhǔn)確的,由此構(gòu)成的永磁交流伺服系統(tǒng)具有良好的靜、動(dòng)態(tài)性能。
標(biāo)簽: 電機(jī) 傳動(dòng)系統(tǒng) 參數(shù)辨識(shí)
上傳時(shí)間: 2013-07-28
上傳用戶:鳳臨西北
基于DSP在線式UPS不間斷電源控制系統(tǒng)的研究
上傳時(shí)間: 2013-07-08
上傳用戶:yangbo69
永磁同步電動(dòng)機(jī)交流伺服系統(tǒng)作為交流伺服系統(tǒng)的主流,在工業(yè)生產(chǎn)自動(dòng)化領(lǐng)域中應(yīng)用廣泛、前景廣闊。永磁同步伺服電動(dòng)機(jī)作為伺服系統(tǒng)的執(zhí)行機(jī)構(gòu),其性能的優(yōu)劣在很大程度上決定了整個(gè)伺服系統(tǒng)的性能。因此,精心設(shè)計(jì)性能優(yōu)異的永磁同步伺服電動(dòng)機(jī)具有重要的理論意義和應(yīng)用價(jià)值。本課題系統(tǒng)研究了永磁同步伺服電動(dòng)機(jī)的本體設(shè)計(jì),包括設(shè)計(jì)方法、性能計(jì)算、有限元分析、參數(shù)計(jì)算、控制仿真、實(shí)驗(yàn)測(cè)試等。 首先,綜述和分析了永磁同步伺服電動(dòng)機(jī)的研究現(xiàn)狀、存在問題和發(fā)展前景,研究了永磁同步伺服電動(dòng)機(jī)的設(shè)計(jì)特點(diǎn)和方法。開發(fā)了永磁同步伺服電動(dòng)機(jī)的電磁計(jì)算程序,結(jié)合有限元計(jì)算數(shù)值的校正,完成對(duì)樣機(jī)的性能計(jì)算,計(jì)算結(jié)果較為準(zhǔn)確。 接著,深入分析永磁同步伺服電動(dòng)機(jī)的氣隙磁場(chǎng),得到充磁方式、極弧系數(shù)、不均勻氣隙、永磁體厚度等因素對(duì)氣隙磁場(chǎng)的影響,繪制了各因素對(duì)氣隙磁場(chǎng)基波和諧波總量影響的曲線,通過優(yōu)化設(shè)計(jì),得到了明顯改善的正弦氣隙磁場(chǎng)。并拓展研究總結(jié)了不同永磁體形狀和尺寸對(duì)永磁直流電動(dòng)機(jī)在換向和性能上的影響,取得有實(shí)用價(jià)值的研究成果。 然后,基于Ansoft、MagNet電磁分析軟件建立了永磁同步伺服電動(dòng)機(jī)的有限元分析模型,深入研究了電機(jī)的反電勢(shì)波形、穩(wěn)態(tài)運(yùn)行性能和齒槽轉(zhuǎn)矩,計(jì)算了直、交軸同步電抗等重要參數(shù)。建立了永磁同步伺服電動(dòng)機(jī)Id=0控制的Matlab/simulink仿真模型,并進(jìn)行了仿真研究。 最后,對(duì)永磁同步伺服電動(dòng)機(jī)進(jìn)行了實(shí)驗(yàn)測(cè)試和分析,包括反電勢(shì)波形與磁場(chǎng)波形測(cè)試、性能曲線測(cè)試、直交軸同步電抗的測(cè)量。對(duì)測(cè)試結(jié)果與設(shè)計(jì)結(jié)果進(jìn)行了比較分析,驗(yàn)證了設(shè)計(jì)方法的正確性。
標(biāo)簽: 永磁同步 伺服 電動(dòng)機(jī)
上傳時(shí)間: 2013-08-04
上傳用戶:qazwsxedc
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1