逆變器廣泛應(yīng)用于工業(yè)生產(chǎn)的各個(gè)方面,數(shù)字控制具有方便實(shí)現(xiàn)復(fù)雜算法、抗干擾性強(qiáng)和產(chǎn)品容易升級(jí)等優(yōu)點(diǎn),已成為未來(lái)逆變器的發(fā)展趨勢(shì)。使用數(shù)字技術(shù)控制設(shè)計(jì)逆變器,控制器的性能決定了逆變系統(tǒng)系統(tǒng)的性能。然而在很多高頻應(yīng)用的場(chǎng)合,目前常用的控制器的速度往往不能完全達(dá)到要求。與傳統(tǒng)單片機(jī)和DSP芯片相比,F(xiàn)PGA器件具有更高的處理速度。同時(shí)FPGA應(yīng)用在數(shù)字化逆變器設(shè)計(jì)中,還可以大大簡(jiǎn)化控制系統(tǒng)結(jié)構(gòu),并可實(shí)現(xiàn)多種高速算法,具有較高的性價(jià)比。在逆變器的全數(shù)字化控制領(lǐng)域,F(xiàn)PGA具有很好的應(yīng)用價(jià)值。 論文首先介紹了SPWM基本原理及其控制方式,SPWM的生成方法,并結(jié)合本課題給出了查表法生成SPWM波的一般方法,且以單相全橋逆變器為例進(jìn)行了仿真。分析其的電路特點(diǎn),建立PWM逆變器的統(tǒng)一電路模型、連續(xù)狀態(tài)空間以及離散狀態(tài)空間模型,在此數(shù)學(xué)模型基礎(chǔ)上,針對(duì)逆變器研究分析了目前用于逆變器設(shè)計(jì)的各種數(shù)字控制技術(shù)、控制方案,討論了其控制方法的優(yōu)缺點(diǎn),相關(guān)控制器設(shè)計(jì)的一般問(wèn)題,最后比較了其優(yōu)缺點(diǎn),指出其存在的共性問(wèn)題,總結(jié)了使用FPGA設(shè)計(jì)逆變器數(shù)字控制器的優(yōu)勢(shì)。然后以單相電壓型PWM逆變器為控制模型采用新型模數(shù)結(jié)合現(xiàn)場(chǎng)可編程門陣列FPGA實(shí)現(xiàn)數(shù)字化控制器的方案,給出了純正正弦波逆變器的設(shè)計(jì)方案。 論文詳細(xì)論述了采用模數(shù)混合型FPGA作為主控芯片的高頻逆變器設(shè)計(jì)方法與實(shí)現(xiàn)過(guò)程。系統(tǒng)主控芯片采用Fusion系列AFS600,世界上首個(gè)模數(shù)混合型FPGA。主要設(shè)計(jì)要點(diǎn)包括:逆變器硬件電路設(shè)計(jì)以及SPWM數(shù)字控制系統(tǒng)軟件設(shè)計(jì)。外圍強(qiáng)電電路的設(shè)計(jì)的難點(diǎn)在于用于前端升壓的高頻變壓器的設(shè)計(jì)以及輸出端LC濾波電感與電容的選取。另外,SPWM“H”字全橋逆變電路中的高懸浮電壓也是設(shè)計(jì)中需要值得注意的重要環(huán)節(jié)。在控制系統(tǒng)軟件設(shè)計(jì)方面,采用FPGA自上而下的設(shè)計(jì)方法,對(duì)其控制系統(tǒng)進(jìn)行了功能劃分,完成了SPWM產(chǎn)生器以及加入死區(qū)補(bǔ)償?shù)腜WM發(fā)生器、和反饋等模塊的設(shè)計(jì)。 論文的結(jié)束部分給出了設(shè)計(jì)結(jié)果,并指出了進(jìn)一步的工作的思路和方向。
標(biāo)簽: 逆變器 數(shù)字控制 技術(shù)研究
上傳時(shí)間: 2013-05-19
上傳用戶:小碼農(nóng)lz
隨著生活水平的提高,人們?cè)絹?lái)越關(guān)注自己的身體健康,血壓是反映人體生理狀況的最重要指標(biāo)之一,正常的血壓是保證身體健康的重要條件。 另外血壓也是重癥病人監(jiān)護(hù)的重要指標(biāo),準(zhǔn)確、及時(shí)地監(jiān)測(cè)血壓,對(duì)于了解病情、診斷疾病和保障危重病人安全都極為重要。因此,研制高性能的血壓監(jiān)控系統(tǒng)具有重要的現(xiàn)實(shí)意義。 針對(duì)以上所述,本文提出了一種采用遠(yuǎn)程血壓監(jiān)控系統(tǒng)的解決方案,它融合計(jì)算機(jī)技術(shù)、測(cè)控技術(shù)和網(wǎng)絡(luò)通訊技術(shù)為一體,使電子血壓系統(tǒng)實(shí)現(xiàn)網(wǎng)絡(luò)化。本系統(tǒng)將采集到的血壓信息經(jīng)處理后顯示到液晶屏上,同時(shí)將此信息以TCP/IP的方式發(fā)送到網(wǎng)絡(luò)上,這就是本設(shè)計(jì)的目的所在。 本論文在開(kāi)始介紹了人體生理信號(hào)的特點(diǎn)及其測(cè)量條件之后,詳細(xì)研究分析了血壓測(cè)量原理以及舒張壓和收縮壓的判別。論文的重點(diǎn)放在系統(tǒng)硬件和軟件兩個(gè)方面的設(shè)計(jì)。在硬件方面,以ARM Cortex-M3內(nèi)核的處理器LM3S8962作為控制器(內(nèi)部集成有A/D轉(zhuǎn)換器和以太網(wǎng)控制器等),使得硬件系統(tǒng)的設(shè)計(jì)簡(jiǎn)單化。整個(gè)硬件系統(tǒng)電路由六部分構(gòu)成:處理器LM3S8962最小系統(tǒng)電路;電源模塊:JTAG接口電路:血壓檢測(cè)模塊;液晶顯示模塊;網(wǎng)絡(luò)接口。其中,血壓檢測(cè)模塊是整個(gè)系統(tǒng)設(shè)計(jì)的關(guān)鍵部分和難點(diǎn)部分,它主要是將袖壓的直流部分和交流部分分離出來(lái)送到A/D轉(zhuǎn)換器。軟件方面,這個(gè)部分是第四章的系統(tǒng)軟件的設(shè)計(jì),首先把實(shí)時(shí)操作系統(tǒng)μC/OS-Ⅱ移植到處理器LM3S8962上,然后講解了應(yīng)用程序的設(shè)計(jì)(由三個(gè)部分組成),分別是A/D轉(zhuǎn)換處理程序設(shè)計(jì)、液晶顯示程序設(shè)計(jì)和網(wǎng)絡(luò)通訊程序設(shè)計(jì)。論文的最后對(duì)系統(tǒng)的軟硬件調(diào)試做了簡(jiǎn)單的介紹以及全文的總結(jié)。 關(guān)鍵詞:TCP/IP 示波法 舒張壓 收縮壓 μc/OS-Ⅱ
標(biāo)簽: 遠(yuǎn)程 血壓監(jiān)控系統(tǒng)
上傳時(shí)間: 2013-06-17
上傳用戶:yph853211
隨著世界能源危機(jī)的到來(lái),太陽(yáng)能光伏發(fā)電在能源結(jié)構(gòu)中正在發(fā)揮著越來(lái)越大的作用。而太陽(yáng)能光伏發(fā)電系統(tǒng)的核心部件并網(wǎng)逆變器的性能還需要進(jìn)一步提高。為了迎合市場(chǎng)上對(duì)高品質(zhì)、高性能、智能化并網(wǎng)逆變器的需求,我們將ARM+DSP架構(gòu)作為并網(wǎng)逆變器的控制系統(tǒng)。本系統(tǒng)集成了ARM和DSP的各自的強(qiáng)大功能,使并網(wǎng)逆變器的性能和智能化水平得到了顯著提高。本論文是基于山東大學(xué)魯能實(shí)習(xí)基地“光伏并網(wǎng)逆變器項(xiàng)目”,目前已經(jīng)試制出樣機(jī)。本人主要負(fù)責(zé)并網(wǎng)逆變器控制系統(tǒng)的軟硬件設(shè)計(jì)工作。本文主要研究?jī)?nèi)容有: @@ 1.本并網(wǎng)逆變器采用了內(nèi)高頻環(huán)逆變技術(shù)。文中詳細(xì)分析了這種逆變器的優(yōu)缺點(diǎn),進(jìn)行了充分的系統(tǒng)分析和論證。 @@ 2.采用MATLAB/Simulink軟件對(duì)并網(wǎng)逆變器的控制算法進(jìn)行仿真,包括前級(jí)DC-DC變換的控制算法以及后級(jí)DC-AC逆變的控制算法。通過(guò)仿真驗(yàn)證了所設(shè)計(jì)算法的可行性,對(duì)DSP程序開(kāi)發(fā)提供了很好的指導(dǎo)意義。 @@ 3.本文將ARM+DSP架構(gòu)作為逆變器的控制系統(tǒng),并設(shè)計(jì)了相應(yīng)的硬件控制系統(tǒng)。DSP控制板硬件系統(tǒng)包括AD數(shù)據(jù)采集、硬件電流保護(hù)、電源、eCAN總線,SPI總線等硬件電路。ARM板硬件系統(tǒng)包括SPI總線、RS232總線、RS480總線、以太網(wǎng)總線、LCD顯示、實(shí)時(shí)時(shí)鐘、鍵盤等硬件電路。 @@ 4.本文設(shè)計(jì)和實(shí)現(xiàn)了兩種最大功率點(diǎn)跟蹤控制算法:功率擾動(dòng)觀察法或增量電導(dǎo)法;孤島檢測(cè)方法采用被動(dòng)式和主動(dòng)式兩種檢測(cè)方式,被動(dòng)式所采用的方法是將過(guò)/欠電壓和電壓相位突變檢測(cè)相結(jié)合的方式,主動(dòng)式采用正反饋頻率偏移法;為了實(shí)現(xiàn)并網(wǎng)逆變器的輸出電流與電網(wǎng)電壓同頻同相,使用了軟件鎖相環(huán)控制技術(shù)。本文分別給出了以上各種算法的控制程序流程圖。 @@ 5.本文也給出了AD數(shù)據(jù)采集、eCAN總線、RS232、RS485、以太網(wǎng)、PWM輸出等程序流程圖,以及DSP和ARM之間的SPI總線通信程序流程圖。并且分別給出了ARM管理機(jī)控制系統(tǒng)主程序流程圖和DSP控制機(jī)控制系統(tǒng)主程序流程圖。 @@ 6.最后對(duì)并網(wǎng)逆變器樣機(jī)進(jìn)行實(shí)驗(yàn)結(jié)果分析。結(jié)果顯示:該樣機(jī)基本上實(shí)現(xiàn)了本文提出的設(shè)計(jì)方案所應(yīng)完成的各項(xiàng)功能,樣機(jī)的性能比較理想。 @@關(guān)鍵詞:太陽(yáng)能光伏;并網(wǎng)逆變器;SPWM; DSP; ARM
標(biāo)簽: ARMDSP 架構(gòu) 太陽(yáng)能光伏
上傳時(shí)間: 2013-07-02
上傳用戶:windwolf2000
隨著電力電子技術(shù)的發(fā)展,各類電力電子裝置應(yīng)運(yùn)而生,這些產(chǎn)品在出廠前需要根據(jù)不同的需要進(jìn)行相應(yīng)的測(cè)試和校驗(yàn)。傳統(tǒng)的負(fù)載測(cè)試存在著能耗大、靈活性差等諸多缺點(diǎn),已經(jīng)越來(lái)越不能滿足各種測(cè)試場(chǎng)合的要求,特別是一些要求用動(dòng)態(tài)變化的負(fù)載、非線性負(fù)載、具有負(fù)阻特性的負(fù)載以及有源負(fù)載等測(cè)試場(chǎng)合。因此針對(duì)這一問(wèn)題,本文利用電力電子技術(shù)結(jié)合計(jì)算機(jī)技術(shù)、控制技術(shù)等設(shè)計(jì)了一種通用的交流電子負(fù)載模擬裝置,以滿足各種測(cè)試場(chǎng)合的要求。 @@ 交流電子負(fù)載是一種可以模擬真實(shí)負(fù)載的電力電子裝置,它不但可以模擬傳統(tǒng)的線性負(fù)載,也可以模擬各種非線性負(fù)載、有源負(fù)載等其他形式的負(fù)載。目前國(guó)內(nèi)外對(duì)電子負(fù)載的研究還不成熟,有些是使交流電源按照一定的功率放電,但是輸出電流卻與真實(shí)負(fù)載測(cè)試下的電流有較大的差別;而有些雖然能夠準(zhǔn)確控制電源的放電電流取得和真實(shí)負(fù)載一樣的效果,但試驗(yàn)電能完全被消耗掉,造成很大的浪費(fèi)。本文研究的新型交流電子負(fù)載克服了以上電子負(fù)載方案的缺點(diǎn),可以滿足各種試驗(yàn)場(chǎng)合的測(cè)試需求,能夠在很大程度上減少能量浪費(fèi),豐富試驗(yàn)樣式且節(jié)約試驗(yàn)成本。 @@ 本文分析了能饋式交流電子負(fù)載的模擬原理,確定了采用中間直流環(huán)節(jié)的交-直-交主電路結(jié)構(gòu),其一端接待測(cè)交流電源,另一端接低壓交流電網(wǎng)。前級(jí)負(fù)載模擬環(huán)節(jié)和后級(jí)能量回饋環(huán)節(jié)均采用可四象限運(yùn)行的電壓型PWM(Pulse Width Modulation)變換器。負(fù)載模擬環(huán)節(jié)直接與待測(cè)電源連接,采用電流滯環(huán)瞬時(shí)值比較方式,使電源輸出的實(shí)際電流信號(hào)準(zhǔn)確、快速的跟蹤其指令電流信號(hào)值,使得電子負(fù)載對(duì)待測(cè)電源呈現(xiàn)設(shè)定的負(fù)載形式,完成電子負(fù)載的模擬功能;能量回饋環(huán)節(jié)與電網(wǎng)連接,通過(guò)控制輸出電流與電網(wǎng)電壓同頻、同相位,實(shí)現(xiàn)試驗(yàn)電能的單位功率因數(shù)回饋電網(wǎng)的目的,變換器的控制采用常規(guī)的雙閉環(huán)控制方式,電流內(nèi)環(huán)控制實(shí)際電流跟蹤指令值的變化,電壓外環(huán)通過(guò)控制輸出電流的大小使直流側(cè)母線電壓穩(wěn)定為設(shè)定指令值。 @@ 電子負(fù)載系統(tǒng)在負(fù)載模擬部分通過(guò)人機(jī)接口設(shè)定具體負(fù)載形式和負(fù)載屬性,為了更加準(zhǔn)確快速的得到電流指令信號(hào)值,文中采用更加直接的數(shù)值計(jì)算方 法,由數(shù)字信號(hào)處理器實(shí)時(shí)計(jì)算出該給定負(fù)載模式下的指令電流值。使用交流小信號(hào)分析法得到了系統(tǒng)的頻域方塊圖,并對(duì)主電路元件參數(shù)以及調(diào)節(jié)器進(jìn)行了優(yōu)化設(shè)計(jì)。針對(duì)大功率開(kāi)關(guān)管開(kāi)關(guān)頻率存在的限制,本文提出了幾種提高電流跟蹤精度的改進(jìn)方法,取得了良好的效果。整個(gè)系統(tǒng)在PSIM平臺(tái)上進(jìn)行了不同工作模式下的仿真,仿真結(jié)果表明方案切實(shí)可行。最后依據(jù)仿真方案設(shè)計(jì)基于TMS320F2812的控制系統(tǒng)和功率電路,使用PROTEL軟件進(jìn)行了原理圖的繪制。@@關(guān)鍵詞:電子負(fù)載;能量回饋;電壓型變換器;滯環(huán)PWM電流控制;雙閉環(huán);PWM整流器
上傳時(shí)間: 2013-05-26
上傳用戶:saharawalker
隨著自動(dòng)化技術(shù)的發(fā)展和城市化進(jìn)程的加快,照明用電占人類總發(fā)電量的比重也越來(lái)越大,對(duì)電子鎮(zhèn)流器的要求也越來(lái)越高,即功率因數(shù)高低的要求更加明確,功率因數(shù)高低已成為綜合衡量整流設(shè)備的一個(gè)重要指標(biāo)。 本次課題采用功率因數(shù)控制芯片UC3854為核心,設(shè)計(jì)了一種較寬電壓輸入范圍、固定電壓輸出的250W的AC/DC變換器。對(duì)該變換器所用的有源功率因數(shù)校正(APFC)系統(tǒng)與UC3854芯片的原理和結(jié)構(gòu)做了詳細(xì)的分析與討論,介紹了UC3854的管腳排列及功能。所設(shè)計(jì)的以UC3854為核心的有源功率因數(shù)校正器能在90V~220V的寬電壓輸入范圍內(nèi)得到穩(wěn)定的380V直流電壓輸出,并使功率因數(shù)達(dá)到0.99以上。 MATLAB強(qiáng)大的信號(hào)分析處理能力對(duì)高效地設(shè)計(jì)APFC系統(tǒng)及整定各個(gè)環(huán)節(jié)的參數(shù)帶來(lái)了極大便利。本文同時(shí)也采用MATLAB設(shè)計(jì)實(shí)現(xiàn)了一個(gè)有源功率因數(shù)校正器的仿真,用SIMULINK已有模塊模擬了UC3854的控制過(guò)程,給出了仿真電路和波形。 本文創(chuàng)新性的將系統(tǒng)工程引入APFC電路中,將系統(tǒng)工程中的建模分析和狀態(tài)空間法應(yīng)用到此次設(shè)計(jì)的系統(tǒng)中,使得此次工程設(shè)計(jì)提升到了抽象的數(shù)學(xué)概念上。用數(shù)學(xué)模型可以表達(dá)出主電路的工作原理,從狀態(tài)空間法中找出了改變系統(tǒng)動(dòng)態(tài)性能的相應(yīng)參數(shù),為此類電路的設(shè)計(jì)提供了理論依據(jù)。
標(biāo)簽: 有源功率因數(shù) 校正技術(shù)
上傳時(shí)間: 2013-05-24
上傳用戶:15736969615
光伏陣列是光伏系統(tǒng)的重要組成部分,它決定了光伏系統(tǒng)的發(fā)電量,同時(shí)也是光伏系統(tǒng)成本的主要部分。因此合理配置光伏陣列,提高光伏陣列的利用效率一直是光伏系統(tǒng)設(shè)計(jì)的研究重點(diǎn),也是降低光伏系統(tǒng)發(fā)電成本的重要措施。本文采用了可變電子負(fù)載現(xiàn)場(chǎng)測(cè)試方法,設(shè)計(jì)并研制出基于Philips公司的LPC2214的光伏陣列測(cè)試儀樣機(jī)。本文主要工作及創(chuàng)新在于: 1.在基于LPC2214測(cè)試控制部分的硬件電路設(shè)計(jì)中,為電壓和電流的采樣各設(shè)置了四路不同量程的采樣通道。采樣時(shí)系統(tǒng)自動(dòng)選擇最合適的量程,提高電壓和電流大范圍測(cè)量時(shí)的精度; 2.通過(guò)對(duì)系統(tǒng)進(jìn)行一次預(yù)采樣來(lái)確定光伏陣列的開(kāi)路電壓和短路電流。預(yù)采樣的方法只需要使可變電子負(fù)載完成一次由阻值為零到阻值為無(wú)窮大的操作; 3.對(duì)測(cè)試得到的數(shù)據(jù)首先將電壓值進(jìn)行從小到大的升序重組,其對(duì)應(yīng)的電流值采用lagrange中值法對(duì)進(jìn)行數(shù)字濾波處理,從而消除由于偶然出現(xiàn)的脈沖性干擾所引起的采樣值偏差; 4.對(duì)輔助電源、測(cè)試控制電路和液晶顯示進(jìn)行了一體化的設(shè)計(jì),使光伏陣列特性的測(cè)量和顯示可以在本測(cè)試儀上一次完成; 5.本測(cè)試儀樣機(jī)可以利用光伏陣列的數(shù)學(xué)模型以及測(cè)量的實(shí)時(shí)數(shù)據(jù)對(duì)光伏陣列的特性曲線進(jìn)行預(yù)估和分析。 通過(guò)對(duì)光伏陣列進(jìn)行實(shí)際測(cè)量,得到的實(shí)驗(yàn)結(jié)果表明:該樣機(jī)測(cè)試系統(tǒng)運(yùn)行穩(wěn)定、攜帶方便、測(cè)量精度較高、一次完整的測(cè)試只需14ms左右,測(cè)試速度快,并且測(cè)量得到的伏安特性可以在液晶上直接以曲線的形式顯示,使測(cè)得的陣列特性更為直觀,能滿足工程應(yīng)用的需要。
標(biāo)簽: 光伏陣列 特性曲線 測(cè)試設(shè)備
上傳時(shí)間: 2013-04-24
上傳用戶:fairy0212
風(fēng)能作為一種清潔可再生能源,迅速發(fā)展,已經(jīng)成為世界新能源最主要的發(fā)展方向之一。風(fēng)力發(fā)電系統(tǒng)按照容量可以分為小型風(fēng)力發(fā)電系統(tǒng)和大型風(fēng)力發(fā)電系統(tǒng),按照是否并網(wǎng)又分為離網(wǎng)系統(tǒng)和并網(wǎng)系統(tǒng),文章著重研究小型并網(wǎng)風(fēng)力發(fā)電系統(tǒng)。 本文在分析國(guó)內(nèi)外風(fēng)力發(fā)電系統(tǒng)的現(xiàn)狀以及風(fēng)電產(chǎn)業(yè)現(xiàn)狀的基礎(chǔ)上,研究了風(fēng)力發(fā)電系統(tǒng)的總體結(jié)構(gòu)、風(fēng)力機(jī)的主要機(jī)型以及發(fā)電系統(tǒng)的分類。通過(guò)研究風(fēng)力機(jī)和永磁同步發(fā)電機(jī)各自的特性,基于它們的數(shù)學(xué)模型分別建立了各自的仿真模型。基于上述仿真模型,分別建立了整個(gè)電壓源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)和電流源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)的仿真模型。 在風(fēng)力發(fā)電并網(wǎng)系統(tǒng)中,并網(wǎng)逆變器是核心部分,可以分為電流源型逆變器和電壓源型逆變器。本文研究了三相電壓源型逆變器實(shí)現(xiàn)并網(wǎng)所采用的控制方法,包括空間矢量調(diào)制法和鎖相環(huán)技術(shù)。針對(duì)電流源型并網(wǎng)逆變器風(fēng)力發(fā)電系統(tǒng),研究了PWM電流源型整流器的空間矢量調(diào)制和PWM電流源型逆變器的三種脈寬調(diào)制策略。 文中電壓源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)的仿真模型,采用BOOST變換器穩(wěn)定逆變器輸入直流電壓,采用SPWM方法控制電壓源型逆變器實(shí)現(xiàn)風(fēng)機(jī)的并網(wǎng);在電流源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)仿真模型中,用空間矢量調(diào)制方法控制PWM電流源型整流器和用SPWM控制電流源型逆變器的方法實(shí)現(xiàn)了系統(tǒng)的并網(wǎng)。本文對(duì)采用的控制方法進(jìn)行了仿真驗(yàn)證,比較了兩種并網(wǎng)系統(tǒng)的并網(wǎng)優(yōu)缺點(diǎn),最后對(duì)兩種并網(wǎng)逆變器的區(qū)別進(jìn)行了總結(jié)。
標(biāo)簽: 并網(wǎng) 仿真研究 風(fēng)力發(fā)電系統(tǒng)
上傳時(shí)間: 2013-06-29
上傳用戶:wyaqy
作為新一代直流輸電技術(shù),基于電壓源換流器的高壓直流輸電憑借其獨(dú)特的技術(shù)優(yōu)點(diǎn)取得了飛速的發(fā)展,并已在新能源發(fā)電系統(tǒng)聯(lián)網(wǎng)、電網(wǎng)非同步互聯(lián)、無(wú)源系統(tǒng)供電、無(wú)功補(bǔ)償?shù)葓?chǎng)合得到實(shí)際工程應(yīng)用。在我國(guó),VSC-HVDC的研究尚處于起步階段。本論文著重開(kāi)展了VSC-HVDC技術(shù)的數(shù)學(xué)建模和控制策略的研究。論文的主要工作和取得的創(chuàng)新性成果如下: 1.建立了系統(tǒng)標(biāo)么值模型,分析了VSC-HVDC的運(yùn)行原理和穩(wěn)態(tài)功率特性。明確了系統(tǒng)主電路參數(shù)對(duì)運(yùn)行特性的影響,在此基礎(chǔ)上提出了一種功率定義下的換流電抗、直流電壓和直流電容以及頻域下的交流濾波器參數(shù)設(shè)計(jì)方法。 2.設(shè)計(jì)了一種基于無(wú)差拍控制的VSC-HVDC直接電流離散控制器。針對(duì)控制系統(tǒng)存在的VSC電壓輸出能力限制、PI控制器積分飽和現(xiàn)象和離散采樣時(shí)間延遲問(wèn)題,提出了相應(yīng)的解決方法,推導(dǎo)了其電流內(nèi)環(huán)控制器與功率外環(huán)離散控制器的設(shè)計(jì)原則。 3.推導(dǎo)了換流站網(wǎng)側(cè)與VSC交流側(cè)功率節(jié)點(diǎn)以及換流電抗與損耗電阻上的瞬時(shí)功率方程,在此基礎(chǔ)上提出了一種換流站網(wǎng)側(cè)功率節(jié)點(diǎn)控制并補(bǔ)償換流電抗與損耗電阻消耗二倍頻功率的不平衡控制策略,設(shè)計(jì)了該控制策略下的雙序矢量控制器模型。同時(shí)針對(duì)傳統(tǒng)dq軟件鎖相環(huán)在電壓不平衡時(shí)鎖相速度慢的缺點(diǎn),提出了一種基于前置相序分解的頻率自適應(yīng)dq鎖相環(huán),提高了不平衡控制算法的動(dòng)態(tài)性能與穩(wěn)態(tài)特性。 4.對(duì)VSC閥在交流電網(wǎng)低電壓故障下的過(guò)流現(xiàn)象進(jìn)行分析并提出了一種考慮正負(fù)序分量影響的指令電流限制器,保證了故障限流效果。分析比較了VSC閥電流裕度穿越法和指令電流限制器穿越法的特性,在此基礎(chǔ)上提出一種結(jié)合正負(fù)序指令電流限制器與控制模式切換的交流電網(wǎng)低電壓穿越控制方法,從而解決交流電網(wǎng)低電壓故障時(shí)系統(tǒng)穩(wěn)定與VSC過(guò)流問(wèn)題。 5.在分析現(xiàn)有VSC-HVDC拓?fù)涞幕A(chǔ)上,從降低電力電子器件直接串聯(lián)數(shù)目、器件開(kāi)關(guān)頻率和簡(jiǎn)化主電路拓?fù)浣Y(jié)構(gòu)三個(gè)方面出發(fā),將傳統(tǒng)直流輸電中常用的變壓器隔離式多模塊結(jié)構(gòu)引入VSC-HVDC系統(tǒng),并針對(duì)該模塊級(jí)聯(lián)式拓?fù)涮岢鲆环N系統(tǒng)協(xié)調(diào)控制與模塊獨(dú)立運(yùn)行相結(jié)合的新型控制策略。針對(duì)該拓?fù)湎滤投苏敬嬖诘母髂K直流側(cè)電容電壓均衡問(wèn)題,提出了一種基于有功分量調(diào)節(jié)的直流側(cè)電壓控制方法。
上傳時(shí)間: 2013-06-03
上傳用戶:lw4463301
本文分析了永磁同步直線電動(dòng)機(jī)的運(yùn)行機(jī)理與運(yùn)行特性,并通過(guò)坐標(biāo)變換,分別得出了電機(jī)在a—b—c,α—β、d—q坐標(biāo)系下的數(shù)學(xué)模型。針對(duì)永磁同步直線電機(jī)模型的非線性與耦合特性,采用了次級(jí)磁場(chǎng)定向的矢量控制,并使id=0,不但解決了上述問(wèn)題,還實(shí)現(xiàn)了最大推力電流比控制。為了獲得平穩(wěn)的推力,采用了SVPWM控制,并對(duì)它算法實(shí)現(xiàn)進(jìn)行了研究。 針對(duì)速度環(huán)采用傳統(tǒng)PID控制難以滿足高性能矢量控制系統(tǒng),通過(guò)對(duì)傳統(tǒng)PID控制和模糊控制理論的研究,將兩者相結(jié)合,設(shè)計(jì)出能夠在線自整定的模糊PID控制器。將該控制器代替?zhèn)鹘y(tǒng)的PID控制器應(yīng)用于速度環(huán),以提高系統(tǒng)的動(dòng)靜態(tài)性能。 在以上分析的基礎(chǔ)上,設(shè)計(jì)了永磁同步直線電機(jī)矢量控制系統(tǒng)的軟、硬件。其中電流檢測(cè)采用了新穎的電流傳感器芯片IR2175,以解決溫漂問(wèn)題;速度檢測(cè)采用了增量式光柵尺,設(shè)計(jì)了與DSP的接口電路,通過(guò)M/T法實(shí)現(xiàn)對(duì)電機(jī)的測(cè)速。最后在Matlab/Simlink下建立了電機(jī)及其矢量控制系統(tǒng)的仿真模型,并對(duì)分別采用傳統(tǒng)PID速度控制器和模糊PID速度控制器的系統(tǒng)進(jìn)行仿真,結(jié)果表明采用模糊PID控制具有更好的動(dòng)態(tài)響應(yīng)性能,能有效的抑制暫態(tài)和穩(wěn)態(tài)下的推力脈動(dòng),對(duì)于負(fù)載擾動(dòng)具有較強(qiáng)的魯棒性。
上傳時(shí)間: 2013-07-04
上傳用戶:13681659100
世界環(huán)境的日益惡化和傳統(tǒng)能源的日漸枯竭,促使了對(duì)新能源的開(kāi)發(fā)和發(fā)展。具有可持續(xù)發(fā)展的太陽(yáng)能資源受到了各國(guó)的重視,各國(guó)相繼出臺(tái)的新能源法對(duì)太陽(yáng)能發(fā)展起到推波助瀾的作用。其中,光伏并網(wǎng)發(fā)電具有深遠(yuǎn)的理論價(jià)值和現(xiàn)實(shí)意義,僅在過(guò)去五年,光伏并網(wǎng)電站安裝總量已達(dá)到數(shù)千兆瓦。而連接光伏陣列和電網(wǎng)的光伏并網(wǎng)逆變器便是整個(gè)光伏并網(wǎng)發(fā)電系統(tǒng)的關(guān)鍵。 本文根據(jù)逆變器結(jié)構(gòu)以及光伏發(fā)電陣列特點(diǎn),提出了基于DC-DC和DC-AC兩級(jí)并網(wǎng)逆變器的結(jié)構(gòu)。基于DC-DC和DC-AC電路的相對(duì)獨(dú)立性,分別對(duì)DC-DC和DC-AC進(jìn)行詳盡分析,并提出了新的控制策略。在DC-DC轉(zhuǎn)換器中,采用了Boost電路對(duì)太陽(yáng)能陣列輸出電壓進(jìn)行調(diào)制,并對(duì)系統(tǒng)進(jìn)行最大功率點(diǎn)跟蹤。針對(duì)固定電壓法和擾動(dòng)法跟蹤最大功率點(diǎn)的缺點(diǎn),提出三點(diǎn)最小二乘最大功率點(diǎn)跟蹤的新算法,實(shí)驗(yàn)證明了該算法能夠準(zhǔn)確而迅速的跟蹤系統(tǒng)最大功率點(diǎn),從而提高系統(tǒng)的利用率,穩(wěn)定系統(tǒng)的輸出電壓。在DC-AC轉(zhuǎn)換器中,采用輸出電流控制,根據(jù)正弦脈沖寬度調(diào)制的缺點(diǎn),提出空間矢量脈沖寬度調(diào)制方法對(duì)逆變器進(jìn)行控制,從而提高直流側(cè)電壓的利用率,減少諧波。基于SVPWM的控制原理,建立系統(tǒng)模型,結(jié)果表明輸出電流與電網(wǎng)電壓保持同相位,從而證明了該控制算法的可行性。 在提出新的控制策略的基礎(chǔ)上,對(duì)2kW的三相并網(wǎng)逆變器進(jìn)行硬件設(shè)計(jì),包括主電路DC-DC和DC-AC,驅(qū)動(dòng)電路以及電壓電流檢測(cè)電路,過(guò)零檢測(cè)電路等,為類似結(jié)構(gòu)的光伏并網(wǎng)逆變器提供了設(shè)計(jì)參考。
標(biāo)簽: 光伏并網(wǎng) 逆變器
上傳時(shí)間: 2013-07-16
上傳用戶:rishian
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1