選相控制開關又稱同步開關或相控開關,其實質就是控制開關在電壓或電流的期望相位完成合閘或分閘,以主動消除開關過程所產生的涌流和過電壓等電磁暫態效應,提高開關的開斷能力。本論文首先分析了提高斷路器可靠性的途徑,介紹了相控開關的研究意義及其優點;相控開關的基本原理和分合閘操作過程,為同步開關選相控制器的設計提供了理論依據。 永磁操動機構是近幾年正在發展的一種新型操動機構,它利用永久磁鐵產生的磁力將真空斷路器保持在分合閘位置,而無需任何傳統機械脫扣鎖扣裝置。它機構零部件少,結構簡單,使斷路器動作的可靠性大大提高。二次控制回路采用電子控制模塊,動作迅速并可以實現精確時間控制,采用開關電源輸入范圍寬,輸入輸出用光耦隔離,功耗低,極大地提高了可靠性,使永磁機構真空斷路器成為真正意義的免維護智能化斷路器。單線圈永磁機構結構簡單、體積小,在中壓領域得到越來越廣泛的應用。相控真空開關采用三相獨立操動的單線圈永磁機構,其操作電源為由大功率電力電子器件控制的儲能大容量電容器,通過多次的測試結果表明單線圈永磁機構能很好地滿足相控開關的要求,是相控開關的理想選擇。 本文詳細介紹了以Mega16為控制核心的單線圈永磁機構智能控制器,這種控制系統集保護、控制、開關量監測等功能于一體。可實現對電容電壓實時顯示,具有過電流速斷保護、過電壓和欠電壓保護、閉鎖以及報警等功能。 通過相關試驗測試,表明本系統已經初步達到了設計所要達到的預期效果,為以后的研究以及同步控制系統的完善和優化提供了有益的經驗和參考。
上傳時間: 2013-07-02
上傳用戶:一諾88
20世紀90年代以來,為了緩解能源和環境對人類生活和社會發展的壓力,世界各國都投入了大量資金開發電動汽車。在日本、美國、法國等汽車強國已經開發出一些商品化的電動汽車。我國在“十五”期間,國家電動汽車重大科技專項確立以燃料電池汽車、混合電動汽車、純電動汽車以及相關的多能源動力總成控制、驅動電機、動力蓄電池及燃料電池等關鍵零部件研發。 與其它驅動電機相比,永磁同步電動機具有高效率、高功率密度和良好的控制特性,受到人們的普遍關注,越來越多地應用于電動汽車的驅動裝置中。本文課題以印度REVA公司小型純電動汽車驅動用永磁同步電動機及其控制器為研究對象,對永磁同步電動機本體及控制器硬件進行了比較深入的研究,設計并制作了永磁同步電動機試驗樣機以及基于TMS320LF2407A DSP的永磁同步電動機控制器,在此基礎上展開了初步試驗研究。 本文首先比較了當前常用電動汽車驅動電機的特點,并綜述了電力電子和計算機控制技術在汽車驅動中的應用;然后分析永磁同步電機氣隙磁場對電機性能的影響,針對電動汽車驅動電機的特點,提出了T形轉子永磁同步電動機,不僅使永磁同步電動機的氣隙磁場接近正弦同時解決了高速運行時磁鋼的固定問題;同時,制作了基于TMS320LF2407A DSP和IPM模塊的永磁同步電動機矢量控制器,并對控制器進行了驅動無刷直流電動機的負載實驗和永磁同步電機的空載實驗;最后,分析永磁同步電機矢量控制的數學模型,并建立了永磁同步電機的SVPWM驅動的仿真模型,進行了id=0的矢量控制系統仿真,研究了永磁同步電機參數對系統動態響應的影響。
上傳時間: 2013-07-23
上傳用戶:cooran
風光互補發電系統作為新能源技術應用的重要組成部分越來越受到人們的青睞,所以將此作為新能源研究的切入點,進行一些有益的嘗試和探索。 本文從太陽能電池的光生伏打效應入手,推導出太陽能電池的U-I曲線,并以此作為最大功率跟蹤(MPPT)技術的理論基礎。針對小風機的發電技術也存在的MPPT技術,文章進行了統一性研究,給出了新的控制策略--變步長擾動觀察控制。為了提高系統的充放電效率,文章還對三段式充放電、均衡充電、溫度補償等蓄電池充電理論進行了闡述。 根據上述理論,結合工程實際,設計了風光互補控制器的電路。利用電壓霍爾和電流霍爾實現了風機電壓、太陽能電池電壓、蓄電池電壓和充電電流的實時采樣,利用TMS320F2812DSP的EVA與AD模塊軟件實現對蓄電池欠壓、過壓、運行等模式的智能充放電管理。針對風力發電機的輸出電壓波動大的問題,系統提供了硬件和軟件的風機過速智能保護系統。本系統采用MPPT的控制策略提高了整個系統的效率,設計提供了一套LCD顯示界面和一組LED指示燈增強系統管理的友好性。為了解決風光互補控制器芯片的供電問題,設計了一套以UC3843PWM芯片為核心的反激式輔助電源。該電源用硬件實現了電流內環、電壓外環的雙環控制策略,提高了系統供電的可靠性和穩定性。 研制出了一臺風光互補控制器樣機,進行了有關實驗、檢測與調試。實驗波形和數據都顯示該系統運行穩定可靠,達到了設計要求。該方案可為風光互補控制器的工程設計提供一定的參考。
上傳時間: 2013-04-24
上傳用戶:diets
傳統開環運行的三相混合式步進電動機驅動系統中存在著振蕩和失步等不足之處。本文針對這種情況,通過對理想化三相混合式步進電動機數學模型的分析,把三相混合式步進電動機視為一種低速同步電動機。同時,結合電流跟蹤型PWM控制方式及恒流斬波驅動的工作原理,設計了基于數字信號處理器TMS320F2812的全數字三相混合式步進電動機正弦波細分驅動系統。 首先,本文從三相混合式步進電動機的數學模型出發,對步進電動機的細分驅動方式進行了研究,分析了步進電動機連續均勻旋轉的工作機理。然后分析了步進電動機的運行特性及細分控制的必要性,進而分析了細分驅動對改善步進電動機運行性能的作用,并針對細分運行的一些不足之處,提出了均勻細分恒轉矩控制的方案。理論分析表明,在混合式步進電動機的三相定子繞組中通以互差120°的正弦波電流時,可得到類似同步機的轉矩特性,使電動機均勻旋轉。 本系統硬件電路以TMS320F2812為核心,采用正弦波細分和電流跟蹤型脈寬調制(PWM)技術實現三相混合式步進電動機的細分控制,使三相定子繞組電流嚴格跟蹤電流給定信號變化。應用IR公司的IR2130集成驅動芯片進行了步進電動機驅動系統的功率驅動環節的設計,節省了板上空間,減小了裝置體積。同時從裝置可靠性出發,設計了一套安全可靠的硬件保護電路。 實驗結果表明,本文所設計的三相混合式步進電動機正弦波細分驅動器具有優良的控制性能。細分運行時減弱了混合式步進電動機的低速振動和噪聲,使電動機運行平穩,并改善了其低頻運行性能。
上傳時間: 2013-06-27
上傳用戶:ca05991270
統一潮流控制器(UPFC)作為一種典型的FACTS裝置,綜合了FACTS元件的多種靈活控制手段,能同時或選擇地控制線路的基本參數(電壓、阻抗、相角),也可交替地控制線路上的有功和無功潮流,還可獨立地提供可控的并聯無功補償。因此UPFC被認為是最有創造性,功能最強大的FACTS元件。 首先,本文詳細分析了統一潮流控制器的基本結構和工作原理。采用開關函數法建立了電壓源型變流器的數學模型,并推導了統一潮流控制器在abc三相坐標系和dq旋轉坐標系下的數學模型,該模型考慮到直流環節電容儲能的動態變化過程,從而使其更適合于系統的動態特性分析。本文討論的UPFC控制采用基于兩相旋轉坐標系下的非線性解耦控制方案,在UPFC的精確模型下具有可快速跟蹤給定值的優點,且在dq坐標系下可以實現有功和無功功率的獨立控制;在電容電壓PI調節中加入電流反饋,使其更接近真實值。 其次,本論文在分析UPFC數學模型的基礎上建立了UPFC在MATLAB平臺上的仿真模型;然后利用MATLAB建立了三相環形電力系統,將UPFC模型應用到該系統中,著重研究了UPFC對電網電能質量的影響。首先研究了UPFC對故障系統中電網功率的影響以及UPFC對提高故障系統功率穩定性的作用;同時,對UPFC能夠抑制無故障系統中系統接入電網時的功率沖擊進行了研究。最后,通過仿真波形研究了UPFC對電網故障中電壓跌落的補償作用以及UPFC對正常系統電壓的影響,結果發現,UPFC可以保持故障中的系統電壓為正弦波。
上傳時間: 2013-04-24
上傳用戶:1406054127
本文以異步電機參數離線自整定及參數在線辨識為對象,從理論分析,算法提出,仿真證明和實驗驗證四部分進行了深入研究。 異步電機參數離線自整定及參數在線辨識技術的研究,為異步電機控制性能的不斷提高提供了保障,以使更好,更精確的控制方式能夠應用到工程實際中去。 由于在工程中使用的電機和變頻器不一定能夠匹配,而需要在電機運行之前由專業的工程師對變頻器作重新設置,此過程復雜,耽誤時間而且需要專業人員操作。 本文提出一套異步電機參數離線自整定算法,使用C語言編程,并在一臺2.2KW電機的硬件實驗平臺上驗證了該算法,實現了電機在運行之前,變頻器自動測試出電機的基本參數,為矢量控制等控制方式提供所需要的電機參數。 電機在運行過程中,由于溫度等因素的影響,電機的參數會發生變化,影響電機運行的穩定性,所以要對電機參數做在線辨識。本文對異步電機參數在線辨識作了理論分析和方法總結,為下一步工作打下基礎。 算法的實現需要相應的硬件實驗平臺,本文對硬件實驗平臺作了詳細介紹,包括主電路的設計、IGBT的驅動保護電路設計、DSP數字控制器的設計。 本文還對文中提出的實驗方法作了MATLAB/Simulink仿真,驗證了該方法的可行性,對實驗有指導意義。
上傳時間: 2013-04-24
上傳用戶:541657925
貴州電解鋁廠供電四車間廠房內變壓器、整流柜、電容等設備種類繁多,同系列設備安放距離跨度較大.這些電力電子器件長期運行導致系統內部某些連接點絕緣介質老化,甚至脫落.這種現象單憑肉眼很難觀察,該廠對此問題的解決方法為:技術工人攜帶小型紅外探測儀定期采集上述器件的某些連接點,從紅外圖像數據得出溫度數據以此判斷器件工作是否處于良好狀態.由于人為因素,工人不一定能全部獲取所有連接點數據.可見,此方法費時費力,還存在隱患. 針對現行探測方法存在的弊端,依托"中鋁貴州分公司電解鋁廠整流所安全運行監控系統開發"項目,利用一臺直線行走的智能小車停靠在已選擇的定位點處監測車間的電器設備,因此這就涉及到了監控小車的精準定位問題.本文以卞位機智能監控小車為研究對象,采用模糊PID控制技術對PLC發出的脈沖頻率進行自動調節,依據脈沖頻率誤差E和誤差變化率EC的變化對PID控制的參數進行自整定,實現對小車速度的模糊控制,從而實現了小車的精準定位,為上位機的監控工作做好了準備. 論文第一章介紹了電解鋁廠供電車間的供電情況,分析了小車定位精準的重要性,介紹了本文的研究內容.第二章對小車主要結構的硬件設計作了介紹.第三章論述了小車的運動控制,從分析步進電機的矩頻特性和數學模型入手,介紹了小車的啟停控制和運動中的測速.第四章論述了小車的精準定位方法,介紹了模糊PID控制器設計,重點介紹了模糊PID控制算法的程序設計.第五章列舉了實際運行調試中出現的幾種問題,介紹了相應的控制方法加以克服.第六章對論文進行了總結.
上傳時間: 2013-04-24
上傳用戶:kirivir
本文在此背景下,針對非線性PID控制、自抗擾控制以及Smith預估器和前饋控制展開研究。為了提高控制器的穩定性和魯棒性,設計了ADRC-Smith預估控制器和前饋ADRC控制器,將其應用于大時滯溫度控制系統,并在此基礎上設計了吹塑機控制系統解決方案,通過大量的理論研究、仿真和實驗,實現了良好的控制效果。論文的主要工作有: 1.研究了自抗擾技術和溫度控制的現狀以及溫度控制的特點。 2.研究了ADRC的發展史,深入了解ADRC的原理與優點。ADRC在控制非線性對象時比PID具有更好的控制性能,但是參數調節理論不完善,阻礙了其廣泛應用。 3.通過MATLAB仿真,得到ADRC參數之間的內在規律,通過將ADRC的參數統一到一個時間因子上,達到簡化調節參數個數的目的,從而降低調試難度,同時,在無時滯溫控實驗平臺上進行實驗,驗證了參數調節規律的可行性。 4.自抗擾控制器在大時滯溫控上的應用,以前文獻一般將時滯環節等效成一階慣性環節,這樣就要求增加ADRC的階次,增加了調節參數個數,在參數調節理論不完善的情況下無疑是增加了調試難度。本文將ADRC分別與Smith預估器和前饋控制器相結合,設計了ADRC-Smith預估控制器和前饋ADRC控制器來解決具有大時滯控制問題。這兩類新控制器的優點是不增加ADRC的階次,是解決不確定大時滯被控對象的新途徑,也是ADRC控制器實際應用上的一次創新。 5.在可編程計算機控制器(PCC)搭建的大時滯溫控實驗平臺上進行實驗,將前饋ADRC控制器和貝加萊專用溫度控制器PIDXH的控制效果進行比較,實驗結果表明前饋ADRC控制器在穩定性、魯棒性等方面都優于PIDXH控制器。 6.研究了吹塑機控制系統解決方案,并在吹塑機上實驗前饋ADRc控制器,得到了良好的控制效果,進一步驗證了算法的可行性。
上傳時間: 2013-04-24
上傳用戶:1234xhb
本課題來源于企業委托開發項目:大功率兩電平矢量控制變頻器的開發。課題以感應電動機變頻調速系統的產品化開發為目標,對感應電動機參數離線辨識技術和控制器進行了研究和試驗。本人除了參加整體系統的設計和制作任務外,獨立完成了參數離線辨識工作。文章介紹了一種實用的參數離線辨識方法,在綜合各種控制策略基礎上給出了一套基于DSP的數字化解決方案,通過整機進行了軟硬件調試,實現了設計目標。為產品化打下一定的基礎。 論文第1章介紹了矢量控制以及坐標變換,分析了電動機參數對矢量控制的影響,通過Matlab仿真了電動機參數變化對變頻器輸出的影響。 第2章對辨識主要介紹了參數辨識的算法,對感應電機靜態數學模型進行了化簡,得到各個參數與電壓電流之間的關系方程。通過單相直流試驗和單相交流試驗辨識電動機參數。采用迭代算法計算出非線性方程的數值,還介紹了一種基于電壓電流瞬時值計算電動機功率因數的方法。 第3章對控制器進行了研究,對當前比較先進的自抗擾控制,自適應控制,基于非線性的逆控制等控制策略進行了綜述。最后對基于PI轉速調節器的間接矢量控制系統進行了仿真,并給出了仿真結果。 第4章介紹了實驗室自主開發的基于TI公司DSP TMS320F2812的通用交流調速試驗裝置。根據通用試驗裝置的設計要求設計了控制板電路,電源板電路,功率板電路等電路,進行了調試,并應用到試驗之中,性能達到要求。 第5章介紹了整個系統的功能軟件設計和功能試驗結果,給出了部分程序流程圖和裝置的基本功能試驗波形。 最后就課題的研究進行了整體總結,為將來的后續研究提出建議。
上傳時間: 2013-06-25
上傳用戶:hehuaiyu
目前,能源危機與環境污染已經備受關注,被各個國家提上紀事日程。在眾多的新能源中,風能以它可再生、清潔、無污染等特點受到人們的青睞。在風力發電技術上也從獨立型逐漸向并網型轉變,因此并網技術已成為主流。由于變速恒頻具有發電量大,對風電場風速的變化適應性好具有較高的葉尖速比等優點,所以變速恒頻必然會取代恒速恒頻。實現變速恒頻的風力發電機組有很多種,其中永磁同步直驅式風力發電機由于不需要齒輪箱,因而改善風能轉換效率,減小維護,降低了噪音,提高可靠性,本文以永磁同步直驅式發電系統為研究對象。 本文針對永磁同步直驅式發電雙PWM變換器系統,首先在對變速恒頻理論研究的基礎上,對風力機的數學模型進行了分析,完成了對風力機的最大風力跟蹤模擬仿真。由于發電機發出的電隨著風速的不斷變化,因此就靠控制變換器來實現恒壓恒頻的電壓并送入電網。其次在對永磁同步發電機和變換器的數學模型研究的基礎上提出了對整流側和電網側變換器分開控制,控制整流器來控制發電機的轉速,控制逆變器來實現穩壓和恒頻的向電網輸送電壓。并對逆變器側的直流電容和電感選值給出了范圍,在這些理論基礎上對逆變器進行了MATLAB/SIMULINK仿真,給出了仿真結果。在前面理論分析的基礎上,針對逆變器部分做了硬件和軟件的設計。選用智能功率模塊(IPM)作為逆變器,采用霍爾電壓、電流傳感器實現了對電壓電流的采樣,控制器選用TMS320F2407A,并制作了對采樣信號處理電路板、PWM信號處理電路板和傳感器電路板,編寫了程序。
上傳時間: 2013-06-17
上傳用戶:youlongjian0