本文以電機控制DSPTMS320LF2407為核心,結(jié)合相關(guān)外圍電路,運用新型SVPWM控制方法,設(shè)計電梯專用變頻器。為了達到電梯專用變頻器大轉(zhuǎn)矩、高性能的要求,在硬件上提高系統(tǒng)的實時性、抗干擾性和高精度性;在軟件上采用新型SVPWM控制方法,以消除死區(qū)的負面影響,另外單神經(jīng)元PID控制器應(yīng)用于速度環(huán),對速度的調(diào)節(jié)作用有明顯改善。通過軟硬件結(jié)合的方式,改善電機輸出轉(zhuǎn)矩,使電梯控制系統(tǒng)的性能得到提高。 系統(tǒng)主電路主要由三部分組成:整流部分、中間濾波部分和逆變部分,分別用6RI75G-160整流橋模塊、電解電容電路和7MBP50RA120IPM模塊實現(xiàn)。并設(shè)計有起動時防止沖擊電流的保護電路,以及防止過壓、欠壓的保護電路。其中,對逆變模塊IPM的驅(qū)動控制是控制電路的核心,也是系統(tǒng)實現(xiàn)的主要部分。控制電路以DSP為核心,由IPM驅(qū)動隔離控制電路、轉(zhuǎn)速位置檢測電路、電流檢測電路、電源電路、顯示電路和鍵盤電路組成。對IPM驅(qū)動、隔離、控制的效果,直接影響系統(tǒng)的性能,反映了變頻器的性能,所以這部分是改善變頻器性能的關(guān)鍵部分。另外,本課題擬定的被控對象是永磁同步電動機(PMSM),要對系統(tǒng)實現(xiàn)SVPWM控制,依賴于轉(zhuǎn)子位置的準確、實時檢測,只有這樣,才能實現(xiàn)正確的矢量變換,準確的輸出PWM脈沖,使合成矢量的方向與磁場方向保持實時的垂直,達到良好的控制性能,因此,轉(zhuǎn)子位置檢測是提高變頻器性能的一個重要環(huán)節(jié)。 系統(tǒng)采用的控制方式是SVPWM控制。本文從SVPWM原理入手,分析了死區(qū)時間對SVPWM控制的負面作用,采用了一種新型SVPWM控制方法,它將SVPWM的180度導(dǎo)通型和120度導(dǎo)通型結(jié)合起來,從而達到既可以消除死區(qū)影響,又可以提高電源利用率的目的。另外,在速度調(diào)節(jié)環(huán)節(jié),采用單神經(jīng)元PID控制器,通過反復(fù)的仿真證明,在調(diào)速比不是很大的情況下,其對速度環(huán)的調(diào)節(jié)作用明顯優(yōu)于傳統(tǒng)PID控制器。 通過實驗證明,系統(tǒng)基本上達到高性能的控制要求,適合于電梯控制系統(tǒng)。
上傳時間: 2013-05-21
上傳用戶:trepb001
上海交通大學(xué)工程碩士學(xué)位論文 本文首先對視頻監(jiān)控系統(tǒng)的現(xiàn)狀做了簡單分析, 并介紹了本系統(tǒng) 中主要涉及到的相關(guān)技術(shù),包括嵌入式技術(shù)、圖像壓縮技術(shù)、視頻壓 縮技術(shù)和移動數(shù)據(jù)通信技術(shù)。具備了一定的理論基礎(chǔ)后,提出本系統(tǒng) 的總體設(shè)計方案,明確需要實現(xiàn)的目標功能。然后,圍繞目標方案詳 細介紹了具體實現(xiàn)方法,包括硬件總體結(jié)構(gòu)、嵌入式 Linux的移植、 USB 攝像頭驅(qū)動移植、Video4Linux 編程方法、網(wǎng)絡(luò)傳輸模塊的開發(fā)、 流媒體系統(tǒng)建立、WAP 程序的開發(fā)等。最后給出了在現(xiàn)網(wǎng)測試環(huán)境中 調(diào)測結(jié)果。 本系統(tǒng)通過嵌入式芯片實現(xiàn)靜態(tài)圖像及視頻的采集、編碼,并將 采集壓縮編碼后的數(shù)據(jù)傳送到視頻中心服務(wù)器, 在2G/3G 移動終端中 以 WAP 或流媒體客戶端方式直接查看遠程圖像。 系統(tǒng)最大的特點是采 用了分布式架構(gòu)的 C/S(采集端至視頻中心服務(wù)器)和 B/S(WAP 服 務(wù)器至移動終端)結(jié)構(gòu)便于系統(tǒng)的動態(tài)擴展;同時也借助了 WAP 技術(shù) 實現(xiàn)了傳統(tǒng)視頻監(jiān)控的無線化。
標簽: ARM9 無線圖像 采集系統(tǒng)
上傳時間: 2013-07-05
上傳用戶:cuibaigao
隨著世界能源危機的到來,太陽能光伏發(fā)電在能源結(jié)構(gòu)中正在發(fā)揮著越來越大的作用。而太陽能光伏發(fā)電系統(tǒng)的核心部件并網(wǎng)逆變器的性能還需要進一步提高。為了迎合市場上對高品質(zhì)、高性能、智能化并網(wǎng)逆變器的需求,我們將ARM+DSP架構(gòu)作為并網(wǎng)逆變器的控制系統(tǒng)。本系統(tǒng)集成了ARM和DSP的各自的強大功能,使并網(wǎng)逆變器的性能和智能化水平得到了顯著提高。本論文是基于山東大學(xué)魯能實習(xí)基地“光伏并網(wǎng)逆變器項目”,目前已經(jīng)試制出樣機。本人主要負責(zé)并網(wǎng)逆變器控制系統(tǒng)的軟硬件設(shè)計工作。本文主要研究內(nèi)容有: @@ 1.本并網(wǎng)逆變器采用了內(nèi)高頻環(huán)逆變技術(shù)。文中詳細分析了這種逆變器的優(yōu)缺點,進行了充分的系統(tǒng)分析和論證。 @@ 2.采用MATLAB/Simulink軟件對并網(wǎng)逆變器的控制算法進行仿真,包括前級DC-DC變換的控制算法以及后級DC-AC逆變的控制算法。通過仿真驗證了所設(shè)計算法的可行性,對DSP程序開發(fā)提供了很好的指導(dǎo)意義。 @@ 3.本文將ARM+DSP架構(gòu)作為逆變器的控制系統(tǒng),并設(shè)計了相應(yīng)的硬件控制系統(tǒng)。DSP控制板硬件系統(tǒng)包括AD數(shù)據(jù)采集、硬件電流保護、電源、eCAN總線,SPI總線等硬件電路。ARM板硬件系統(tǒng)包括SPI總線、RS232總線、RS480總線、以太網(wǎng)總線、LCD顯示、實時時鐘、鍵盤等硬件電路。 @@ 4.本文設(shè)計和實現(xiàn)了兩種最大功率點跟蹤控制算法:功率擾動觀察法或增量電導(dǎo)法;孤島檢測方法采用被動式和主動式兩種檢測方式,被動式所采用的方法是將過/欠電壓和電壓相位突變檢測相結(jié)合的方式,主動式采用正反饋頻率偏移法;為了實現(xiàn)并網(wǎng)逆變器的輸出電流與電網(wǎng)電壓同頻同相,使用了軟件鎖相環(huán)控制技術(shù)。本文分別給出了以上各種算法的控制程序流程圖。 @@ 5.本文也給出了AD數(shù)據(jù)采集、eCAN總線、RS232、RS485、以太網(wǎng)、PWM輸出等程序流程圖,以及DSP和ARM之間的SPI總線通信程序流程圖。并且分別給出了ARM管理機控制系統(tǒng)主程序流程圖和DSP控制機控制系統(tǒng)主程序流程圖。 @@ 6.最后對并網(wǎng)逆變器樣機進行實驗結(jié)果分析。結(jié)果顯示:該樣機基本上實現(xiàn)了本文提出的設(shè)計方案所應(yīng)完成的各項功能,樣機的性能比較理想。 @@關(guān)鍵詞:太陽能光伏;并網(wǎng)逆變器;SPWM; DSP; ARM
上傳時間: 2013-07-09
上傳用戶:趙安qw
作為電子類專業(yè)學(xué)生,實驗是提高學(xué)生對所學(xué)知識的印象以及發(fā)現(xiàn)問題和解決問題的能力,增加學(xué)生動手能力的必須環(huán)節(jié)。本設(shè)計的目的就是開發(fā)一套滿足學(xué)生實驗需求的信號源,基于此目的本信號源并不需要突出的性能,但經(jīng)濟上要求低成本,同時要求操作簡單,能夠輸出多種波形,并且利于學(xué)生在此平臺上認識信號源原理,同時方便在此平臺上進行拓展開發(fā)。 設(shè)計中運用虛擬儀器技術(shù)將計算機屏幕作為儀器面板,采用EPP接口,同時在FPGA上開發(fā)控制電路,為后續(xù)開發(fā)留下了空間,同時節(jié)省了成本。本設(shè)計采用地址線16位,數(shù)據(jù)線12位的靜態(tài)RAM作為信號源的波形存儲器,后端采用兩種濾波類型對需要濾波的信號進行濾波。啟動信號時軟件需要先將波形數(shù)據(jù)預(yù)存在存儲器中便于調(diào)用,最后得到的結(jié)果基本滿足教學(xué)實驗的需求。 本文結(jié)構(gòu)上首先介紹了直接采用DDS芯片制作信號源的利弊,及作者采用這種設(shè)計的初衷,然后介紹了信號源的整體結(jié)構(gòu),總體模塊。以下章節(jié)首先介紹FPGA內(nèi)部設(shè)計,包括總體結(jié)構(gòu)和幾大部分模塊,包括:時鐘產(chǎn)生電路,相位累加器,數(shù)據(jù)輸入控制電路,濾波器控制電路,信號源啟動控制電路。 然后介紹了其他模塊的設(shè)計,包括存儲器選擇,幅度控制電路的設(shè)計以及濾波器電路的設(shè)計,本設(shè)計的幅度控制采用兩級DA級聯(lián),以及后端電阻分壓網(wǎng)絡(luò)調(diào)節(jié)的方式進行設(shè)計,提高了幅度調(diào)節(jié)的范圍。對于濾波器的設(shè)計,依據(jù)不同的信號頻率,分成了4個部分,對于500K以下的信號采用的是二階巴特沃斯有源低通濾波,對于500K以上至5M以下信號采用的五階RC低通濾波器。 在軟件設(shè)計部分,分成兩個部分,對于底層驅(qū)動程序采用以Labwindows/CVI為平臺進行開發(fā),利用其編譯和執(zhí)行速度快,并且和LabVIEW能夠很好連接的特性。對于上層控制軟件,采用以LabVIEW為平臺進行開發(fā),充分利用其圖化設(shè)計,易于擴展。 論文最后對所做工作進行了總結(jié),提出了進一步改進的方向。
上傳時間: 2013-04-24
上傳用戶:afeiafei309
近年來,瓦斯事故在煤礦生產(chǎn)事故中所占比例越來越高,給礦工的生產(chǎn)生活帶來了極大的災(zāi)難,必須加強對瓦斯的監(jiān)測監(jiān)控,避免瓦斯爆炸事故。因此對瓦斯氣體進行快速、實時檢測對于煤礦安全生產(chǎn)及環(huán)境保護有特別重要的意義。便攜式甲烷檢測報警儀是各國應(yīng)用最早最普遍的一種甲烷濃度檢測儀表,可隨時檢測作業(yè)場所的甲烷濃度,也可使用甲烷傳感器對甲烷濃度進行連續(xù)實時地監(jiān)測。大體上當前應(yīng)用的便攜式甲烷檢測儀器,按檢測原理分為光學(xué)甲烷檢測儀、熱導(dǎo)型甲烷檢測儀、熱催化型甲烷檢測報警儀、氣敏半導(dǎo)體式甲烷檢測儀等幾種。 光干涉甲烷檢測儀性能穩(wěn)定、使用壽命長,測量準確,是我國煤礦主要的便攜式甲烷檢測儀器。但現(xiàn)有的光干涉甲烷檢測儀存在自動化程度低、測量方法繁瑣、讀數(shù)不直觀,人為誤差較大、不能存儲數(shù)據(jù)等缺點。為此本文在干涉型甲烷檢測儀實現(xiàn)的原理上提出利用線陣型電荷耦合器件(CCD)對干涉條紋進行非接觸式的自動測量,獲得條紋信息,通過CCD驅(qū)動、高速模數(shù)轉(zhuǎn)換、數(shù)據(jù)采集等關(guān)鍵技術(shù),實現(xiàn)了干涉條紋位移的精確測量,由單片機對量化后的測量信號進行智能處理,數(shù)字化顯示甲烷含量的測量結(jié)果。 光干涉甲烷檢測的關(guān)鍵是對干涉條紋中白基線以及黑色條紋位置的檢測,本設(shè)計采用線陣CCD成像獲取條紋信息判別其位置。CCD是一種性能獨特的半導(dǎo)體光電器件,近年來在攝像、工業(yè)檢測等科技領(lǐng)域里得到了廣泛的應(yīng)用。將CCD技術(shù)應(yīng)用于位置測量可以實現(xiàn)高精度和非接觸測量的要求;運用FPGA實現(xiàn)CCD芯片的驅(qū)動具有速度快、穩(wěn)定高等優(yōu)點:模數(shù)轉(zhuǎn)換之后的數(shù)據(jù)沒有采用專用存儲芯片進行存儲,而采用FPGA硬件開發(fā)平臺和Verilog HDL硬件描述語言編寫代碼實現(xiàn)數(shù)據(jù)采集模塊系統(tǒng),同時提高數(shù)據(jù)采集精準度,既降低成本又提高了存儲效率。 本文設(shè)計的新系統(tǒng)使用方便、精度高、數(shù)據(jù)可儲存,克服了傳統(tǒng)光干涉甲烷檢測儀的缺點,技術(shù)指標和功能都得到較大改善。
上傳時間: 2013-06-08
上傳用戶:jogger_ding
隨著交通工具的迅猛發(fā)展,智能交通系統(tǒng)(Intelligent TransportationSystems,簡稱ITS)在交通管理中受到廣泛的關(guān)注。而在ITS中,車牌識別(LicensePlate Recognition,簡稱LPR)是其核心技術(shù)。車牌識別系統(tǒng)主要由數(shù)據(jù)采集和車牌識別算法兩個部分組成。由于車牌清晰程度、攝像機性能、氣候條件等因素的影響,牌照中的字符可能出現(xiàn)不清楚、扭曲、缺損或污跡干擾,這都給識別造成一定難度。因此,在復(fù)雜背景中快速準確地進行車牌定位成為車牌識別系統(tǒng)的難點。 本文研究和設(shè)計了一種集圖象采集,圖象識別,圖象傳輸?shù)扔谝惑w的實時嵌入式系統(tǒng)。該平臺包括硬件系統(tǒng)設(shè)計與應(yīng)用程序開發(fā)兩個方面,充分利用TI公司的C6000系列DSP強大的并行運算能力、以及FPGA的靈活時序邏輯控制技術(shù),從硬件方面實現(xiàn)系統(tǒng)的高速運行。 本文的主要工作有兩部分組成,具體如下: (1) 在硬件設(shè)計方面:實現(xiàn)由A/D、電源、FPGA、DSP以及SDRAM和FLASH所組成的車牌識別系統(tǒng);設(shè)計并完成系統(tǒng)的原理圖和印制板圖;完成電路板調(diào)試,以及完成FPGA.在高速圖像采集中的veriIog應(yīng)用程序開發(fā)。 (2) 在軟件開發(fā)方面:完成Philips公司的SAA7113H的配置代碼開發(fā),以及DSP底層的部分驅(qū)動程序開發(fā)。 該系統(tǒng)能夠?qū)崿F(xiàn)25幀每秒的數(shù)字視頻流圖像數(shù)據(jù)的輸出,并由FPGA負責(zé)完成一幅720×572數(shù)據(jù)量的圖像采集。DSP負責(zé)系統(tǒng)的嵌入式操作,包括系統(tǒng)的控制和車牌識別算法的實現(xiàn)。 目前,嵌入式車牌識別系統(tǒng)硬件平臺已經(jīng)搭建成功,系統(tǒng)軟件代碼程序也已經(jīng)開發(fā)完成。本系統(tǒng)能夠?qū)崿F(xiàn)高速圖像采集、嵌入式操作與車牌識別算法、UART數(shù)據(jù)通信等功能,具有速度快、穩(wěn)定性高、體積小、功耗低等特點,為車牌識別算法提供一個較好的驗證平臺。
標簽: FPGA DSP 車牌識別系統(tǒng)
上傳時間: 2013-04-24
上傳用戶:yangbo69
本文的主要研究內(nèi)容是利用FPGA平臺實現(xiàn)以太網(wǎng)絡(luò)接口。 首先,對論文的大致內(nèi)容和組織結(jié)構(gòu)做了簡要介紹,并且比較分析了目前比較流行的網(wǎng)絡(luò)接口實現(xiàn)的三種方法,并以此為基礎(chǔ)提出了本文中重點介紹的基于FPGA 的網(wǎng)絡(luò)接口實現(xiàn)方法。 其次,介紹采用以FPGA 做為主控芯片控制8019AS 網(wǎng)絡(luò)控制芯片來實現(xiàn)從網(wǎng)絡(luò)上接收數(shù)據(jù)幀的功能。FPGA 需要在上電時完成對于8019AS的初始化設(shè)置。在接收和發(fā)送數(shù)據(jù)報文時,對相應(yīng)的寄存器進行控制和操作以完成網(wǎng)絡(luò)數(shù)據(jù)幀的接收。對FPGA 與8019AS 之間的接口實現(xiàn)進行了詳細的描述。 最后,介紹了在FPGA 內(nèi)部對于接收到的網(wǎng)絡(luò)數(shù)據(jù)幀進行TCP/IP協(xié)議分析的具體過程和實現(xiàn)方法。分別詳細介紹了接收模塊、發(fā)送模塊以及其中子模塊具體功能和實現(xiàn)方法。說明了模塊之間相互觸發(fā)的具體關(guān)系。現(xiàn)有的網(wǎng)絡(luò)接口一般是采用MCU 或者ARM 等專用控制芯片來實現(xiàn)的,而此次課題以FPGA 作為主控芯片來實現(xiàn)網(wǎng)絡(luò)接口以及部分TCP/IP 協(xié)議分析是一個創(chuàng)意。而且由于FPGA 多管腳可以靈活配置,也使得系統(tǒng)的可擴展性有了很大的提高。
標簽: FPGA 以太網(wǎng)絡(luò) 接口的設(shè)計
上傳時間: 2013-06-09
上傳用戶:huazi
隨著世界能源危機的到來,太陽能光伏發(fā)電在能源結(jié)構(gòu)中正在發(fā)揮著越來越大的作用。而太陽能光伏發(fā)電系統(tǒng)的核心部件并網(wǎng)逆變器的性能還需要進一步提高。為了迎合市場上對高品質(zhì)、高性能、智能化并網(wǎng)逆變器的需求,我們將ARM+DSP架構(gòu)作為并網(wǎng)逆變器的控制系統(tǒng)。本系統(tǒng)集成了ARM和DSP的各自的強大功能,使并網(wǎng)逆變器的性能和智能化水平得到了顯著提高。本論文是基于山東大學(xué)魯能實習(xí)基地“光伏并網(wǎng)逆變器項目”,目前已經(jīng)試制出樣機。本人主要負責(zé)并網(wǎng)逆變器控制系統(tǒng)的軟硬件設(shè)計工作。本文主要研究內(nèi)容有: 1.本并網(wǎng)逆變器采用了內(nèi)高頻環(huán)逆變技術(shù)。文中詳細分析了這種逆變器的優(yōu)缺點,進行了充分的系統(tǒng)分析和論證。 2.采用MATLAB/Simulink軟件對并網(wǎng)逆變器的控制算法進行仿真,包括前級DC-DC變換的控制算法以及后級DC-AC逆變的控制算法。通過仿真驗證了所設(shè)計算法的可行性,對DSP程序開發(fā)提供了很好的指導(dǎo)意義。 3.本文將ARM+DSP架構(gòu)作為逆變器的控制系統(tǒng),并設(shè)計了相應(yīng)的硬件控制系統(tǒng)。DSP控制板硬件系統(tǒng)包括AD數(shù)據(jù)采集、硬件電流保護、電源、eCAN總線,SPI總線等硬件電路。ARM板硬件系統(tǒng)包括SPI總線、RS232總線、RS480總線、以太網(wǎng)總線、LCD顯示、實時時鐘、鍵盤等硬件電路。 4.本文設(shè)計和實現(xiàn)了兩種最大功率點跟蹤控制算法:功率擾動觀察法或增量電導(dǎo)法;孤島檢測方法采用被動式和主動式兩種檢測方式,被動式所采用的方法是將過/欠電壓和電壓相位突變檢測相結(jié)合的方式,主動式采用正反饋頻率偏移法;為了實現(xiàn)并網(wǎng)逆變器的輸出電流與電網(wǎng)電壓同頻同相,使用了軟件鎖相環(huán)控制技術(shù)。本文分別給出了以上各種算法的控制程序流程圖。 5.本文也給出了AD數(shù)據(jù)采集、eCAN總線、RS232、RS485、以太網(wǎng)、PWM輸出等程序流程圖,以及DSP和ARM之間的SPI總線通信程序流程圖。并且分別給出了ARM管理機控制系統(tǒng)主程序流程圖和DSP控制機控制系統(tǒng)主程序流程圖。 6.最后對并網(wǎng)逆變器樣機進行實驗結(jié)果分析。結(jié)果顯示:該樣機基本上實現(xiàn)了本文提出的設(shè)計方案所應(yīng)完成的各項功能,樣機的性能比較理想。
標簽: ARMDSP 架構(gòu) 太陽能光伏 并網(wǎng)逆變器
上傳時間: 2013-07-10
上傳用戶:sz_hjbf
隨著計算機、通信、電子技術(shù)的進步,嵌入式系統(tǒng)和以太網(wǎng)技術(shù)的融合將成為嵌入式技術(shù)未來的重要發(fā)展方向。基于ARM的嵌入式系統(tǒng)由于具有低功耗、高性能、低成本、可以進行多任務(wù)操作等優(yōu)點,在控制領(lǐng)域得到了越來越廣泛的應(yīng)用。 本選題來自中山大學(xué)與北京航天五院合作研制的流體網(wǎng)絡(luò)系統(tǒng)地面原理樣機控制器設(shè)計項目。論文研究的主要目的是利用基于ARM920T內(nèi)核的嵌入式微處理器AT91RM9200融合多傳感器設(shè)計一種可以在地面實驗室環(huán)境中可靠運行的數(shù)據(jù)采集與溫度控制系統(tǒng)。 本文從嵌入式測控系統(tǒng)的硬件實現(xiàn)和軟件設(shè)計兩方面進行分析。在硬件設(shè)計上,主控制板以Atmel公司生產(chǎn)的AT91RM9200 CPU為核心,主要包括串口模塊、存儲模塊、以太網(wǎng)接口模塊、基于SPI串行接口設(shè)計的數(shù)據(jù)采集模塊(A/D)、基于I2C接口設(shè)計的PID控制信號輸出模塊(D/A)和采用PIO接口設(shè)計的開關(guān)控制輸出模塊等電路,其中后三個模塊承擔(dān)了流體網(wǎng)絡(luò)回路的傳感器數(shù)據(jù)采集,關(guān)鍵點的溫度控制和多路電磁閥的開關(guān)控制等任務(wù),后文將重點介紹。在軟件設(shè)計方面,主要分兩個方面進行討論,分別為主控制器上基于嵌入式Linux系統(tǒng)的軟件和上位機采用Visual C++編寫的監(jiān)控軟件。主控制器軟件采用多線程進行設(shè)計,包括主線程、服務(wù)器子線程和數(shù)據(jù)采集子線程,三個線程同時運行,提高了系統(tǒng)的運行效率。上位機和主控制器通過接入以太網(wǎng)中,然后由服務(wù)器線程和上位機客戶端利用socket套接字實現(xiàn)通信。同時上位機軟件也提供形象美觀的圖形用戶界面,配合主控制器實現(xiàn)特定的溫度、流量和壓力監(jiān)控。 本論文設(shè)計的嵌入式測控系統(tǒng)充分利用了AT91RM9200內(nèi)嵌的的強大功能模塊,包括SPI接口模塊和I2C接口模塊等,可廣泛應(yīng)用于控制領(lǐng)域。對該系統(tǒng)的一些研究成果和設(shè)計方法具有一定的先進性和良好的實用性,具有良好的應(yīng)用前景。
標簽: ARM 流體 網(wǎng)絡(luò)測控
上傳時間: 2013-06-30
上傳用戶:hmy2st
我國是世界上設(shè)施農(nóng)業(yè)面積最大的國家,設(shè)施面積占世界總面積的70-80%。目前國內(nèi)設(shè)施溫室應(yīng)用的主要環(huán)境參數(shù)采控系統(tǒng)大多為進口產(chǎn)品,這些產(chǎn)品技術(shù)含量高,采控效果好,但相對價格較高,通常適用于現(xiàn)代化的大型或高檔連棟溫室。少數(shù)國產(chǎn)品牌無論技術(shù)水平還是采控效果均不甚理想,尤其缺少能夠適用于我國常見的中小型日光溫室的低成本智能采集控制裝置。本文基于國家高技術(shù)研究發(fā)展計劃(863計劃)課題“設(shè)施農(nóng)業(yè)精準生產(chǎn)技術(shù)系統(tǒng)構(gòu)建與應(yīng)用”,對設(shè)施溫室環(huán)境和生物信息數(shù)據(jù)采集、傳輸、備份、調(diào)控問題進行了研究。 論文分析了目前國內(nèi)中小型日光溫室環(huán)境監(jiān)控需求,提出并實現(xiàn)了一套網(wǎng)絡(luò)型設(shè)施農(nóng)業(yè)日光溫室智能控制系統(tǒng)從硬件到軟件的完整方案。主要研究工作如下: (1) 開發(fā)了面向常用環(huán)境信息傳感器和生物信息傳感器的數(shù)據(jù)采集模塊,該數(shù)據(jù)采集模塊具有可定制、可擴展的特點。 (2) 開發(fā)了基于CF卡的數(shù)據(jù)備份及存儲模塊,為實現(xiàn)現(xiàn)場數(shù)據(jù)的大容量存儲和本地化自主控制提供了基礎(chǔ)。 (3) 構(gòu)建了傳感器數(shù)據(jù)的局域傳輸網(wǎng)絡(luò)和以太網(wǎng)絡(luò)接口,滿足了節(jié)點環(huán)境參數(shù)及視頻信息寬帶傳輸與溫室集中監(jiān)控的需要。 (4) 開發(fā)了面向中小型日光溫室的可擴展核心設(shè)備管理模塊,實現(xiàn)了在決策服務(wù)器支持下的環(huán)境參數(shù)本地自主調(diào)控。 (5) 移植了嵌入式操作系統(tǒng)、開發(fā)了設(shè)備驅(qū)動程序,使用戶可以靈活方便地調(diào)用板載設(shè)備進行系統(tǒng)的二次定制開發(fā)。 (6) 對系統(tǒng)軟件、硬件進行了模擬調(diào)試和現(xiàn)場實驗,驗證了系統(tǒng)在設(shè)施溫室環(huán)境采控中的各項功能。 論文結(jié)構(gòu)如下:首先分析了課題的研究背景、意義、研究現(xiàn)狀和相應(yīng)關(guān)鍵技術(shù);然后在溫室控制的需求分析上提出了智能控制系統(tǒng)的方案;接著給出了智能PAC系統(tǒng)子/主節(jié)點的硬件設(shè)計及實現(xiàn),給出了基于U-BOOT與uClinux的智能PAC系統(tǒng)軟件設(shè)計和驅(qū)動開發(fā);其次設(shè)計了實驗平臺對智能PAC系統(tǒng)進行仿真調(diào)試和現(xiàn)場實驗。論文最后展望了我國設(shè)施農(nóng)業(yè)溫室環(huán)境監(jiān)控的發(fā)展。 現(xiàn)場實驗表明,該智能PAC系統(tǒng)解決了日光溫室環(huán)境和生物信息數(shù)據(jù)采集、傳輸、備份問題,并且具有可定制化、可編程、運行穩(wěn)定可靠的特點,達到了預(yù)期的設(shè)計要求。
標簽: ARM 設(shè)施農(nóng)業(yè) 網(wǎng)絡(luò) 可編程
上傳時間: 2013-04-24
上傳用戶:qw12
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1