本課題設計和完成了一套基于DSP+FPGA結構的小波變換實時圖像處理系統(tǒng)。采用小波算法對圖像進行邊緣提取、圖像增強、圖像融合等處理,并在ADSP-BF535上實現(xiàn)了小波算法,分析了其運行小波算法的性能。圖像處理的數(shù)據(jù)量比較大,而且運算比較復雜,DSP的特殊結構和性能很好地滿足了系統(tǒng)實現(xiàn)的需要,而FPGA的高速性和靈活性也滿足了系統(tǒng)實時性和穩(wěn)定性的需要,所以采用DSP+FPGA來實現(xiàn)圖像處理系統(tǒng)是可靠的,也是可行的。系統(tǒng)的硬件設計以DSP和FPGA為平臺,DSP實現(xiàn)算法、管理系統(tǒng)運行、并實現(xiàn)了系統(tǒng)的自啟動;FPGA實現(xiàn)一些接口、時序控制等,簡化了外圍電路,提高了系統(tǒng)的可靠性。結果表明,在ADSP-BF535上實現(xiàn)小波算法,效果良好,而且滿足系統(tǒng)實時性的要求。最后,總結了系統(tǒng)的設計和調試經(jīng)驗,對調試時遇到的一些問題進行了分析。
上傳時間: 2013-04-24
上傳用戶:Kecpolo
相對于JPEG中二維離散余弦變換(2DDCT)來說,在JPEG2000標準中,二維離散小波變換(2DDWT)是其圖像壓縮系統(tǒng)的核心變換。在很多需要進行實時處理圖像的系統(tǒng)中,如數(shù)碼相機、遙感遙測、衛(wèi)星通信、多媒體通信、便攜式攝像機、移動通信等系統(tǒng),需要用芯片實現(xiàn)圖像的編解碼壓縮過程。雖然有許多研究工作者對圖像處理的小波變換進行了研究,但大都只偏重算法研究,對算法硬件實現(xiàn)時的復雜性考慮較少,對圖像處理的小波變換硬件實現(xiàn)的研究也較少。 本文針對圖像處理的小波變換算法及其硬件實現(xiàn)進行了研究。對文獻[13]提出的“內(nèi)嵌延拓提升小波變換”(Combiningthedata-extensionprocedureintothelifting-basedDWTcore)快速算法進行仔細分析,提出一種基于提升方式的5/3小波變換適合硬件實現(xiàn)的算法,在MATLAB中仿真驗證了該算法,證明其是正確的。并設計了該算法的硬件結構,在MATLAT的Simulink中進行仿真,對該結構進行VHDL語言的寄存器傳輸級(RTL)描述與仿真,成功綜合到Altera公司的FPGA器件中進行驗證通過。本算法與傳統(tǒng)的小波變換的邊界處理方法比較:由于將其邊界延拓過程內(nèi)嵌于小波變換模塊中,使該硬件結構無需額外的邊界延拓過程,減少小波變換過程中對內(nèi)存的讀寫量,從而達到減少內(nèi)存使用量,降低功耗,提高硬件利用率和運算速度的特點。本算法與文獻[13]提出的算法相比較:無需增加額外的硬件計算模塊,又具有在硬件實現(xiàn)時不改變原來的提升小波算法的規(guī)則性結構的特點。這種小波變換硬件芯片的實現(xiàn)不僅適用于JPEG2000的5/3無損小波變換,當然也可用于其它各種實時圖像壓縮處理硬件系統(tǒng)。
上傳時間: 2013-06-13
上傳用戶:jhksyghr
在合成孔徑雷達的研究和研制工作中,合成孔徑雷達模擬技術具有十分重要的作用。本文以440MHz帶寬線性調頻信號,采樣頻率500MHz高分辨合成孔徑雷達視頻模擬器為研究對象。首先對模擬器的幾項主要技術進行分析,在對點目標回波信號模型分析研究的基礎上,對點目標原始回波數(shù)據(jù)進行模擬并做了成像驗證,從而為硬件實現(xiàn)提供了正確的信號模型;針對傳統(tǒng)的“波形存儲直讀法”方案,即在計算機平臺上用模擬軟件產(chǎn)生原始回波數(shù)據(jù)并存儲,再通過計算機接口實現(xiàn)數(shù)據(jù)傳輸,最后完成數(shù)模轉換產(chǎn)生視頻信號這一過程,分析指出該方案在實現(xiàn)高分辨率時的速度和容量瓶頸。 針對具體的設計要求,圍繞速度和容量問題,本文著眼于高分辨率SAR模擬器的FPGA實現(xiàn)研究,指出FPGA實時生成點目標原始回波數(shù)據(jù)是其實現(xiàn)的核心;針對這一核心問題,充分利用現(xiàn)代VLSI設計中的流水線技術與并行陣列技術以及FPGA的優(yōu)良性能和豐富資源,在時間上采用同步流水結構、空間上采用并行陣列形式,將速度和容量問題統(tǒng)一為數(shù)據(jù)的高速生成問題;給出了系統(tǒng)總體設計思想,該方案不需要大容量存儲器單元,大大減少模擬器復雜度;對原始回波數(shù)據(jù)實時生成模塊的各主要單元給出了結構并進行了仿真,結果表明FPGA可以滿足課題設計要求;同時,對該模擬器片上系統(tǒng)的實現(xiàn)、增強人機交互性,給出了人機界面的設計思路。 分析指出了點目標原始回波數(shù)據(jù)實時生成模塊通過并行擴展即可實現(xiàn)多點目標的原始回波數(shù)據(jù)實時生成;最后對復雜場景目標模擬器的實現(xiàn)進行了構思,指出了傳統(tǒng)方案在改進的基礎上實現(xiàn)高分辨率視頻模擬器的可行性。本文首次提出以FPGA實現(xiàn)高分辨率合成孔徑雷達原始回波數(shù)據(jù)實時生成的思想,為國內(nèi)業(yè)界在此方向做了一些理論和實踐上的有益探索,對于國內(nèi)高分辨率合成孔徑雷達的研制具有一定的實際意義。
上傳時間: 2013-04-24
上傳用戶:阿四AIR
在合成孔徑雷達的研究和研制工作中,合成孔徑雷達模擬技術具有十分重要的作用。本文以440MHz帶寬線性調頻信號,采樣頻率500MHz高分辨合成孔徑雷達視頻模擬器為研究對象。首先對模擬器的幾項主要技術進行分析,在對點目標回波信號模型分析研究的基礎上,對點目標原始回波數(shù)據(jù)進行模擬并做了成像驗證,從而為硬件實現(xiàn)提供了正確的信號模型;針對傳統(tǒng)的“波形存儲直讀法”方案,即在計算機平臺上用模擬軟件產(chǎn)生原始回波數(shù)據(jù)并存儲,再通過計算機接口實現(xiàn)數(shù)據(jù)傳輸,最后完成數(shù)模轉換產(chǎn)生視頻信號這一過程,分析指出該方案在實現(xiàn)高分辨率時的速度和容量瓶頸。 針對具體的設計要求,圍繞速度和容量問題,本文著眼于高分辨率SAR模擬器的FPGA實現(xiàn)研究,指出FPGA實時生成點目標原始回波數(shù)據(jù)是其實現(xiàn)的核心;針對這一核心問題,充分利用現(xiàn)代VLSI設計中的流水線技術與并行陣列技術以及FPGA的優(yōu)良性能和豐富資源,在時間上采用同步流水結構、空間上采用并行陣列形式,將速度和容量問題統(tǒng)一為數(shù)據(jù)的高速生成問題;給出了系統(tǒng)總體設計思想,該方案不需要大容量存儲器單元,大大減少模擬器復雜度;對原始回波數(shù)據(jù)實時生成模塊的各主要單元給出了結構并進行了仿真,結果表明FPGA可以滿足課題設計要求;同時,對該模擬器片上系統(tǒng)的實現(xiàn)、增強人機交互性,給出了人機界面的設計思路。 分析指出了點目標原始回波數(shù)據(jù)實時生成模塊通過并行擴展即可實現(xiàn)多點目標的原始回波數(shù)據(jù)實時生成;最后對復雜場景目標模擬器的實現(xiàn)進行了構思,指出了傳統(tǒng)方案在改進的基礎上實現(xiàn)高分辨率視頻模擬器的可行性。本文首次提出以FPGA實現(xiàn)高分辨率合成孔徑雷達原始回波數(shù)據(jù)實時生成的思想,為國內(nèi)業(yè)界在此方向做了一些理論和實踐上的有益探索,對于國內(nèi)高分辨率合成孔徑雷達的研制具有一定的實際意義。
標簽: FPGA USB 性能 數(shù)據(jù)采集模塊
上傳時間: 2013-05-26
上傳用戶:alia
逆變控制器的發(fā)展經(jīng)歷從分立元件的模擬電路到以專用微處理芯片(DSP/MCU)為核心的電路系統(tǒng),并從數(shù)模混合電路過渡到純數(shù)字控制的歷程。但是,通用微處理芯片是為一般目的而設計,存在一定局限。為此,近幾年來逆變器專用控制芯片(ASIC)實現(xiàn)技術的研究越來越受到關注,已成為逆變控制器發(fā)展的新方向之一。本文利用一個成熟的單相電壓型PWM逆變器控制模型,圍繞逆變器專用控制芯片ASIC的實現(xiàn)技術,依次對專用芯片的系統(tǒng)功能劃分,硬件算法,全系統(tǒng)的硬件設計及優(yōu)化,流水線操作和并行化,芯片運行穩(wěn)定性等問題進行了初步研究。首先引述了單相電壓型PWM逆變器連續(xù)時間和離散時間的數(shù)學模型,以及基于極點配置的單相電壓型PWM逆變器電流內(nèi)環(huán)電壓外環(huán)雙閉環(huán)控制系統(tǒng)的設計過程,同時給出了仿真結果,仿真表明此系統(tǒng)具有很好的動、靜態(tài)性能,并且具有自動限流功能,提高了系統(tǒng)的可靠性。緊接著分析了FPGA器件的特征和結構。在給出本芯片應用目標的基礎上,制定了FPGA目標器件的選擇原則和芯片的技術規(guī)格,完成了器件選型及相關的開發(fā)環(huán)境和工具的選取。然后系統(tǒng)闡述了復雜FPGA設計的設計方法學,詳細介紹了基于FPGA的ASIC設計流程,概要介紹了僅使用QuartusII的開發(fā)流程,以及Modelsim、SynplifyPro、QuartusII結合使用的開發(fā)流程。在此基礎上,進行了芯片系統(tǒng)功能劃分,針對:DDS標準正弦波發(fā)生器,電壓電流雙環(huán)控制算法單元,硬件PI算法單元,SPWM產(chǎn)生器,三角波發(fā)生器,死區(qū)控制器,數(shù)據(jù)流/控制流模塊等逆變器控制硬件算法/控制單元,研究了它們的硬件算法,完成了模塊化設計。分析了全數(shù)字鎖相環(huán)的結構和模型,以此為基礎,設計了一種應用于逆變器的,用比例積分方法替代傳統(tǒng)鎖相系統(tǒng)中的環(huán)路濾波,用相位累加器實現(xiàn)數(shù)控振蕩器(DCO)功能的高精度二階全數(shù)字鎖相環(huán)(DPLL)。分析了“流水線操作”等設計優(yōu)化問題,并針對逆變器控制系統(tǒng)中,控制系統(tǒng)算法呈多層結構,且層與層之間還有數(shù)據(jù)流聯(lián)系,其執(zhí)行順序和數(shù)據(jù)流的走向較為復雜,不利于直接采用流水線技術進行設計的特點,提出一種全新的“分層多級流水線”設計技術,有效地解決了復雜控制系統(tǒng)的流水線優(yōu)化設計問題。本文最后對芯片運行穩(wěn)定性等問題進行了初步研究。指出了設計中的“競爭冒險”和飽受困擾之苦的“亞穩(wěn)態(tài)”問題,分析了產(chǎn)生機理,并給出了常用的解決措施。
上傳時間: 2013-05-28
上傳用戶:ice_qi
在衛(wèi)星遙感設備中,隨著遙感技術的發(fā)展和對傳輸式觀測衛(wèi)星遙感圖像質量要求的不斷提高,航天遙感圖像的分辨率和采樣率也越來越高,由此引起高分辨率遙感圖像數(shù)據(jù)存儲量和傳輸數(shù)據(jù)量的急劇增長,然而衛(wèi)星信道帶寬有限。為了盡量保持高分辨率遙感圖像所具有的信息,必須解決輸入數(shù)據(jù)碼率和傳輸信道帶寬之間的矛盾。所以星載高分辨率遙感圖像數(shù)據(jù)的高保真、實時、大壓縮比壓縮技術就成了解決這一矛盾的關鍵技術。FPGA器件為實現(xiàn)數(shù)據(jù)壓縮提供了一種壓縮算法的硬件實現(xiàn)的一個理想的平臺。FPGA器件集成度高,體積小,通過用戶編程實現(xiàn)專門應用的功能。它允許電路設計者利用基于計算機的開發(fā)平臺,經(jīng)過設計輸入,仿真,測試和校驗,直到達到預期的結果,減少了開發(fā)周期。小波變換能夠適應現(xiàn)代圖像壓縮所需要的如多分辨率、多層質量控制等要求,在較大壓縮比下,小波圖像壓縮質量明顯好于DCT變換,因此小波變換成為新一代壓縮標準JPEG2000的核心算法。同時,小波變換的提升算法結構簡單,能夠實現(xiàn)快速算法,有利于硬件實現(xiàn),因此提升小波變換對于采用FPGA或ASIC來實現(xiàn)圖像變換來說是很好的選擇。本文針對衛(wèi)星遙感圖像的數(shù)據(jù)流,主要研究可以對衛(wèi)星圖像進行實時二維小波變換的方案。針對提升小波變換的VLSI結構和FPGA設計中的關鍵技術,從邊界延拓、濾波器結構、整數(shù)小波、定點運算、原位運算等方面進行了研究和討論,并且完成了針對衛(wèi)星遙感圖像的分塊二維9/7提升小波變換的FPGA實現(xiàn)。采用VerIlog語言對設計進行了仿真驗證,并將仿真結果同matlab仿真結果進行了比較,比較結果表明該方案能實現(xiàn)對衛(wèi)星遙感圖像數(shù)據(jù)流的二維提升小波變換的功能。同時QuartusII綜合結果也表明,系統(tǒng)時鐘能夠工作在很高的頻率,可以滿足高速實時對衛(wèi)星圖像的小波變換處理。
上傳時間: 2013-06-15
上傳用戶:00.00
康華光第五版模電答案,很全的啊,每個章節(jié)都有詳細的講解
標簽: 模電
上傳時間: 2013-07-06
上傳用戶:qqiang2006
永磁無刷直流電動機是一種性能優(yōu)越、應用前景廣闊的電動機,傳統(tǒng)的理論分析及設計方法已比較成熟,它的進一步推廣應用,在很大程度上有賴于對控制策略的研究.該文提出了一套基于DSP的全數(shù)字無刷直流電動機模糊神經(jīng)網(wǎng)絡雙模控制系統(tǒng),將模糊控制和神經(jīng)網(wǎng)絡分別引入到無刷直流電動機的控制中來.充分利用模糊控制對參數(shù)變化不敏感,能夠提高系統(tǒng)的快速性的特點,構造適用于調節(jié)較大速度偏差的模糊調節(jié)器,加快系統(tǒng)的調節(jié)速度;由于神經(jīng)網(wǎng)絡既具有非線性映射的能力,可逼近任何線性和非線性模型,又具有自學習、自收斂性,對被控對象無須精確建模,對參數(shù)變化有較強的魯棒性的特點,構造三層BP神經(jīng)網(wǎng)絡調節(jié)器,來實現(xiàn)消除穩(wěn)態(tài)偏差的精確控制.以速度偏差率為判斷依據(jù),實現(xiàn)模糊和神經(jīng)網(wǎng)絡兩種控制模式的切換,使系統(tǒng)在不同速度偏差段快速調整、平滑運行.此外充分利用系統(tǒng)硬件構成的特點,采用適當?shù)腜WM輸出切換策略,最大限度的抑制逆變橋換相死區(qū);通過換相瞬時轉矩公式推導和分析,得出在換相過程中保持導通相功率器件為恒通,即令PWM輸出占空比D=1,來抑制定子電感對換相電流影響的控制策略.上述抑制換相死區(qū)和采用恒通電壓的控制方法,減小了換相引起的轉矩波動,使系統(tǒng)電流保持平滑、轉矩脈動大幅度減小、系統(tǒng)響應更快、并具有較強的魯棒性和實時性.在這種設計下,系統(tǒng)不僅能實現(xiàn)更精確的定位和更準確的速度調節(jié),而且可以使無刷直流電動機長期工作在低速、大轉矩、頻繁起動的狀態(tài)下.該文選用TMS320LF2407作為微控制器,將系統(tǒng)的參數(shù)自調整模糊控制算法,BP神經(jīng)網(wǎng)絡控制算法以及PWM輸出,轉子位置、速度、相電流檢測計算等功能模塊編程存儲于DSP的E2PROM,實現(xiàn)了對無刷直流電動機的全數(shù)字實時控制,并得到了良好的實驗結果的結果.
上傳時間: 2013-06-01
上傳用戶:zl123!@#
永磁同步電機(PMSM)是一種性能優(yōu)越、應用前景廣闊的電機。永磁同步電機調速系統(tǒng)是以永磁同步電機為控制對象,采用變壓變頻技術對電機進行調速的控制系統(tǒng)。因其具有能耗低、可靠性高、控制精確等優(yōu)點,在許多領域得到廣泛的應用。然而,轉子無阻尼繞組的PMSM的采用變頻技術開環(huán)運行時,系統(tǒng)不太穩(wěn)定,電機效率有所下降,轉子溫升高,易造成釹鐵硼永磁體退磁,危及電機安全運行,有時甚至還會出現(xiàn)失步現(xiàn)象,系統(tǒng)無法運行。PMSM控制系統(tǒng)穩(wěn)定運行控制都是建立在閉環(huán)控制基礎之上的,因此如何獲取轉子位置和速度信號是整個系統(tǒng)中相當重要的一個環(huán)節(jié)。當前,在大多數(shù)調速驅動系統(tǒng)中,最常用的方法是在轉子軸上安裝位置傳感器。但這些傳感器增加了系統(tǒng)的成本,降低了系統(tǒng)的可靠性和耐用性。因此,在一些特殊及控制精度要求不很高的場合,無傳感器控制將會得到廣泛的應用。它通過測量電動機的電流、電壓等可測量的物理量,通過特定的觀測器策略估算轉子位置,提取永磁轉子的位置和速度信息,完成閉環(huán)控制。本文以無位置傳感器PMSM控制系統(tǒng)作為研究對象,介紹了永磁同步電機的結構及其數(shù)學模型,詳細地闡述了空間矢量脈寬調制(SVPWM)技術的理論基礎及其波形的產(chǎn)生機制,并對閉環(huán)控制策略進行了研究。鑒于數(shù)字信號處理器(DSP)TMS320LF2407控制芯片出色的性能和豐富的外設資源,使用該芯片設計了控制系統(tǒng)的硬件系統(tǒng)和軟件系統(tǒng),通過對整個控制系統(tǒng)的試驗調試,實現(xiàn)了永磁同步電機的無位置傳感器控制。 本文借助于MATLAB建立了永磁同步電機的仿真數(shù)學模型,并根據(jù)空間矢量脈寬調制的工作原理,構建了永磁同步電機調速控制系統(tǒng)的仿真模型。系統(tǒng)采用αβ定子靜止坐標系下的數(shù)學模型,依據(jù)滑模變結構控制原理,對永磁電機的轉子位置角θe和轉速ωe進行實時在線估算,不斷修正估算位置^θe,控制定子旋轉磁場與轉子磁場垂直并保持與轉子同步旋轉,實現(xiàn)電機的閉環(huán)調速運行。理論分析和仿真結果表明,所提出的永磁同步電機無傳感器控制方法具有較強的魯棒性和令人滿意的性能。
上傳時間: 2013-04-24
上傳用戶:lw852826
磁共振成像(MRI)由于自身獨特的成像特點,使得其處理方法不同于一般圖像.根據(jù)不同的應用目的,該文分別提出了MRI圖像去噪和分割兩個算法.首先,該文針對MRI重建后圖像噪聲分布的實際特點,提出了基于小波變換的MRI圖像去噪算法.該算法詳細闡明了MRI圖像Rician噪聲的特點,首先對與噪聲和邊緣相關的小波系數(shù)進行建模,然后利用最大似然估計來進行參數(shù)估計,同時利用連續(xù)尺度間的尺度相關性特點來進行函數(shù)升級,以便獲得最佳萎縮函數(shù),進一步提高圖像的質量,最終取得了一定的效果.與此同時,該文對MRI圖像的進一步的分析與應用展開了一定研究,提出了一種改進的快速模糊C均值聚類魯棒分割算法.該算法先用K均值聚類方法得到初始聚類中心點,同時考慮鄰域對分割結果的影響,對目標函數(shù)加以改進,用來克服噪聲和非均勻場對MRI圖像分割的影響,達到魯棒分割的目的,為進一步圖像處理和分析打下基礎.通過實驗,我們發(fā)現(xiàn),無論是針對模擬圖像還是實際圖像,該文所提出的兩個算法都取得了較好的效果,達到了預期的目的.
上傳時間: 2013-04-24
上傳用戶:zhichenglu