metricmatlab
ch ¬ ng 4
Ma trË n - c¸ c phÐ p to¸ n vÒ ma trË n.
4.1 Kh¸ i niÖ m:
- Trong MATLAB d÷ liÖ u ® Ó ® a vµ o xö lý d íi d¹ ng ma trË n.
- Ma trË n A cã n hµ ng, m cét ® î c gä i lµ ma trË n cì n m. § î c ký hiÖ u An m
- PhÇ n tö aij cñ a ma trË n An m lµ phÇ n tö n» m ë hµ ng thø i, cét j .
- Ma trË n ® ¬ n ( sè ® ¬ n lÎ ) lµ ma trË n 1 hµ ng 1 cét.
- Ma trË n hµ ng ( 1 m ) sè liÖ u ® î c bè trÝ trª n mét hµ ng.
a11 a12 a13 ... a1m
- Ma trË n cét ( n 1) sè liÖ u ® î c bè trÝ trª n 1 cét.
Floyd-Warshall算法描述
1)適用范圍:
a)APSP(All Pairs Shortest Paths)
b)稠密圖效果最佳
c)邊權可正可負
2)算法描述:
a)初始化:dis[u,v]=w[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If dis[i,j]>dis[i,k]+dis[k,j] Then
Dis[I,j]:=dis[I,k]+dis[k,j]
c)算法結束:dis即為所有點對的最短路徑矩陣
3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。
考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
g a w k或GNU awk是由Alfred V. A h o,Peter J.We i n b e rg e r和Brian W. K e r n i g h a n于1 9 7 7年為U N I X創建的a w k編程語言的較新版本之一。a w k出自創建者姓的首字母。a w k語言(在其所有的版本中)是一種具有很強能力的模式匹配和過程語言。a w k獲取一個文件(或多個文件)來查找匹配特定模式的記錄。當查到匹配后,即執行所指定的動作。作為一個程序員,你不必操心通過文件打開、循環讀每個記錄,控制文件的結束,或執行完后關閉文件。
function [alpha,N,U]=youxianchafen2(r1,r2,up,under,num,deta)
%[alpha,N,U]=youxianchafen2(a,r1,r2,up,under,num,deta)
%該函數用有限差分法求解有兩種介質的正方形區域的二維拉普拉斯方程的數值解
%函數返回迭代因子、迭代次數以及迭代完成后所求區域內網格節點處的值
%a為正方形求解區域的邊長
%r1,r2分別表示兩種介質的電導率
%up,under分別為上下邊界值
%num表示將區域每邊的網格剖分個數
%deta為迭代過程中所允許的相對誤差限
n=num+1; %每邊節點數
U(n,n)=0; %節點處數值矩陣
N=0; %迭代次數初值
alpha=2/(1+sin(pi/num));%超松弛迭代因子
k=r1/r2; %兩介質電導率之比
U(1,1:n)=up; %求解區域上邊界第一類邊界條件
U(n,1:n)=under; %求解區域下邊界第一類邊界條件
U(2:num,1)=0;U(2:num,n)=0;
for i=2:num
U(i,2:num)=up-(up-under)/num*(i-1);%采用線性賦值對上下邊界之間的節點賦迭代初值
end
G=1;
while G>0 %迭代條件:不滿足相對誤差限要求的節點數目G不為零
Un=U; %完成第n次迭代后所有節點處的值
G=0; %每完成一次迭代將不滿足相對誤差限要求的節點數目歸零
for j=1:n
for i=2:num
U1=U(i,j); %第n次迭代時網格節點處的值
if j==1 %第n+1次迭代左邊界第二類邊界條件
U(i,j)=1/4*(2*U(i,j+1)+U(i-1,j)+U(i+1,j));
end
if (j>1)&&(j U2=1/4*(U(i,j+1)+ U(i-1,j)+ U(i,j-1)+ U(i+1,j));
U(i,j)=U1+alpha*(U2-U1); %引入超松弛迭代因子后的網格節點處的值
end
if i==n+1-j %第n+1次迭代兩介質分界面(與網格對角線重合)第二類邊界條件
U(i,j)=1/4*(2/(1+k)*(U(i,j+1)+U(i+1,j))+2*k/(1+k)*(U(i-1,j)+U(i,j-1)));
end
if j==n %第n+1次迭代右邊界第二類邊界條件
U(i,n)=1/4*(2*U(i,j-1)+U(i-1,j)+U(i+1,j));
end
end
end
N=N+1 %顯示迭代次數
Un1=U; %完成第n+1次迭代后所有節點處的值
err=abs((Un1-Un)./Un1);%第n+1次迭代與第n次迭代所有節點值的相對誤差
err(1,1:n)=0; %上邊界節點相對誤差置零
err(n,1:n)=0; %下邊界節點相對誤差置零
G=sum(sum(err>deta))%顯示每次迭代后不滿足相對誤差限要求的節點數目G
end