算法ebook(10部算法經典著作的合集) 算法ebook> 10部算法經典著作的合集 chm格式 (1)Fundamentals of Data Structures by Ellis Horowitz and Sartaj Sahni (2)Data Structures, Algorithms and Program Style Using C by James F. Korsh and Leonard J. Garrett (3)Data Structures and Algorithm Analysis in C by Mark Allen Weiss (4)Data Structures: From Arrays to Priority Queues by Wayne Amsbury (5)Information Retrieval: Data Structures & Algorithms edited by William B. Frakes and Ricardo Baeza-Yates (6)Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest (7)Practical Data Structures in C++ by Bryan Flamig (8)Reliable Data Structures in C by Thomas Plum (9)Data Structures and Algorithms Alfred V. Aho, Bell Laboratories, Murray Hill, New Jersey John E. Hopcroft, Cornell University, Ithaca, New York Jeffrey D. Ullman, Stanford University, Stanford, California (10)DDJ Algorithms and Data Structures Articles
標簽:
ebook
Fundamentals
Structures
Ellis
上傳時間:
2015-04-04
上傳用戶:tfyt
算法介紹
矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優(yōu)化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。
高斯-約旦法(全選主元)求逆的步驟如下:
首先,對于 k 從 0 到 n - 1 作如下幾步:
從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。
m(k, k) = 1 / m(k, k)
m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k
m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k
m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k
最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。
標簽:
算法
矩陣求逆
程序
上傳時間:
2015-04-09
上傳用戶:wang5829