亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

撒大聲地

  • 51單片機c語言教程

    這是一本關于Intel 80C51 以及廣大的51 系列單片機的書這本書介紹給讀者一些新的技術使你的8051 工程和開發過程變得簡單請注意這本書的目的可不是教你各種8051 嵌入式系統的解決方法為使問題討論更加清晰在適當的地方給出了程序代碼我們以討論項目的方法來說明每章碰到的問題所有的代碼都可在附帶的光盤上找到你必須熟系C 和8051 匯編因為本書不是一本C 和匯編的指導書你可以買到不少關于ANSI C 的書最佳選擇當然是Intel的數據書可從你的芯片供應商處免費索取和隨編譯工具附送的手冊附送光盤中有我為這本書編寫和收集的程序這些程序已經通過測試這并不意味著你可以隨時把這些程序加到你的應用系統或工程中有些地方必須首先經過修改才能結合到你的程序中這本書將教你充分使用你的工具如果你只有8051 的匯編程序你也可以學習該書和使用這些例子但是你必須把C 語言的程序裝入你的匯編程序中這對懂得C 語言和8051匯編程序指令的人來說并不是一件困難的事如果你有C 編譯器的話那恭喜你使用C 語言進行開發是一個好的決定你會發現使用C 進行開發將使你的工程開發和維護的時間大大減少如果你已經擁有Keil C51 那你已經選擇了一個非常好的開發工具我發現Keil 軟件包能夠提供最好的支持本書支持Keil C 的擴展如果你有其它的開發工具像Archimedes 和Avocet 這本書也能很好地為你服務但你必須根據你所用的開發工具改變一些Keil 的特殊指令在書的一些地方有硬件圖實例程序在這些硬件上運行這些圖繪制地不是很詳細主要是方框圖但足以使讀者明白軟件和硬件之間的接口讀者應該把這本書看成工具書而不是用來學習各種系統設計通過本書你可以了解給定一定的硬件和軟件設計之后8051 的各種性能希望你能從本書中獲取靈感并有助于你的設計使你豁然開朗當然我希望你也能夠從本書中學到有用的知識使之能夠提升你的設計 這本書向你展示了用8051進行工程設計時的許多問題希望你讀完本書后對8051的認識能有較大的提高如果你現在還沒有夠買C編譯器你應該馬上去買一個采用C語言可是你的系統設計更簡單維護更方便這本書覆蓋面較大從C和匯編的代碼優化到8051的網絡設計再到模糊控制希望你從本書中學到的知識對你今后的系統設計有所幫助

    標簽: 51單片機 c語言 教程

    上傳時間: 2013-10-12

    上傳用戶:ommshaggar

  • 存儲器技術.doc

    存儲器技術.doc 計算機的主存儲器(Main Memory),又稱為內部存儲器,簡稱為內存。內存實質上是一組或多組具備數據輸入輸出和數據存儲功能的集成電路。內存的主要作用是用來存放計算機系統執行時所需要的數據,存放各種輸入、輸出數據和中間計算結果,以及與外部存儲器交換信息時作為緩沖用。由于CPU只能直接處理內存中的數據 ,所以內存是計算機系統中不可缺少的部件。內存的品質直接關系到計算機系統的速度、穩定性和兼容性。 4.1 存儲器類型計算機內部存儲器有兩種類型,一種稱為只讀存儲器ROM(Read Only Memiry),另一種稱為隨機存儲器RAM(Random Access Memiry)。 4.1.1 只讀存儲器只讀存儲器ROM主要用于存放計算機固化的控制程序,如主板的BIOS程序、顯卡BIOS控制程序、硬盤控制程序等。ROM的典型特點是:一旦將數據寫入ROM中后,即使在斷電的情況下也能夠永久的保存數據。從使用上講,一般用戶能從ROM中讀取數據,而不能改寫其中的數據。但現在為了做一日和尚撞一天鐘于軟件或硬件程序升級,普通用戶使用所謂的閃存(Flash Memiry)也可以有條件地改變ROM中的數據。有關只讀存儲器ROM的內容將在第11章中介紹,本章主要介紹隨機存儲器。4.1.2 隨機存取存儲器隨機存取存儲器RAM的最大特點是計算機可以隨時改變RAM中的數據,并且一旦斷電,TAM中數據就會立即丟失,也就是說,RAM中的數據在斷電后是不能保留的。從用于制造隨機存取存儲器的材料上看,RAM又可分為靜態隨機存儲器SRAM(Static RAM)和動態隨機存儲器DRAM(Dymamic RAM)兩種。1. 動態隨機存儲器在DRAM中數據是以電荷的形式存儲在電容上的,充電后電容上的電壓被認為是邏輯上的“1”,而放電后的電容上的電壓被認為是邏輯上的“0”認。為了減少存儲器的引腳數,就反存儲器芯片的每個基本單元按行、列矩陣形式連接起來,使每個存儲單元位于行、列的交叉點。這樣每個存儲單元的地址做一日和尚撞一天鐘可以用位數較少的行地址和列地址兩個部分表示,在對每個單元進行讀寫操作時,就可以采用分行、列尋址方式寫入或讀出相應的數據,如圖4-1所示?! ∮捎陔娙莩潆姾螅娙輹徛烹?,電容 上的電荷會逐漸

    標簽: 存儲器

    上傳時間: 2014-01-10

    上傳用戶:18752787361

  • 單片機應用系統抗干擾技術

    單片機應用系統抗干擾技術:第1章 電磁干擾控制基礎. 1.1 電磁干擾的基本概念1 1.1.1 噪聲與干擾1 1.1.2 電磁干擾的形成因素2 1.1.3 干擾的分類2 1.2 電磁兼容性3 1.2.1 電磁兼容性定義3 1.2.2 電磁兼容性設計3 1.2.3 電磁兼容性常用術語4 1.2.4 電磁兼容性標準6 1.3 差模干擾和共模干擾8 1.3.1 差模干擾8 1.3.2 共模干擾9 1.4 電磁耦合的等效模型9 1.4.1 集中參數模型9 1.4.2 分布參數模型10 1.4.3 電磁波輻射模型11 1.5 電磁干擾的耦合途徑14 1.5.1 傳導耦合14 1.5.2 感應耦合(近場耦合)15 .1.5.3 電磁輻射耦合(遠場耦合)15 1.6 單片機應用系統電磁干擾控制的一般方法16 第2章 數字信號耦合與傳輸機理 2.1 數字信號與電磁干擾18 2.1.1 數字信號的開關速度與頻譜18 2.1.2 開關暫態電源尖峰電流噪聲22 2.1.3 開關暫態接地反沖噪聲24 2.1.4 高速數字電路的EMI特點25 2.2 導線阻抗與線間耦合27 2.2.1 導體交直流電阻的計算27 2.2.2 導體電感量的計算29 2.2.3 導體電容量的計算31 2.2.4 電感耦合分析32 2.2.5 電容耦合分析35 2.3 信號的長線傳輸36 2.3.1 長線傳輸過程的數學描述36 2.3.2 均勻傳輸線特性40 2.3.3 傳輸線特性阻抗計算42 2.3.4 傳輸線特性阻抗的重復性與阻抗匹配44 2.4 數字信號傳輸過程中的畸變45 2.4.1 信號傳輸的入射畸變45 2.4.2 信號傳輸的反射畸變46 2.5 信號傳輸畸變的抑制措施49 2.5.1 最大傳輸線長度的計算49 2.5.2 端點的阻抗匹配50 2.6 數字信號的輻射52 2.6.1 差模輻射52 2.6.2 共模輻射55 2.6.3 差模和共模輻射比較57 第3章 常用元件的可靠性能與選擇 3.1 元件的選擇與降額設計59 3.1.1 元件的選擇準則59 3.1.2 元件的降額設計59 3.2 電阻器60 3.2.1 電阻器的等效電路60 3.2.2 電阻器的內部噪聲60 3.2.3 電阻器的溫度特性61 3.2.4 電阻器的分類與主要參數62 3.2.5 電阻器的正確選用66 3.3 電容器67 3.3.1 電容器的等效電路67 3.3.2 電容器的種類與型號68 3.3.3 電容器的標志方法70 3.3.4 電容器引腳的電感量71 3.3.5 電容器的正確選用71 3.3.6 電容器使用注意事項73 3.4 電感器73 3.4.1 電感器的等效電路74 3.4.2 電感器使用的注意事項74 3.5 數字集成電路的抗干擾性能75 3.5.1 噪聲容限與抗干擾能力75 3.5.2 施密特集成電路的噪聲容限77 3.5.3 TTL數字集成電路的抗干擾性能78 3.5.4 CMOS數字集成電路的抗干擾性能79 3.5.5 CMOS電路使用中注意事項80 3.5.6 集成門電路系列型號81 3.6 高速CMOS 54/74HC系列接口設計83 3.6.1 54/74HC 系列芯片特點83 3.6.2 74HC與TTL接口85 3.6.3 74HC與單片機接口85 3.7 元器件的裝配工藝對可靠性的影響86 第4章 電磁干擾硬件控制技術 4.1 屏蔽技術88 4.1.1 電場屏蔽88 4.1.2 磁場屏蔽89 4.1.3 電磁場屏蔽91 4.1.4 屏蔽損耗的計算92 4.1.5 屏蔽體屏蔽效能的計算99 4.1.6 屏蔽箱的設計100 4.1.7 電磁泄漏的抑制措施102 4.1.8 電纜屏蔽層的屏蔽原理108 4.1.9 屏蔽與接地113 4.1.10 屏蔽設計要點113 4.2 接地技術114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系統的布局119 4.2.5 接地裝置和接地電阻120 4.2.6 地環路問題121 4.2.7 浮地方式122 4.2.8 電纜屏蔽層接地123 4.3 濾波技術126 4.3.1 濾波器概述127 4.3.2 無源濾波器130 4.3.3 有源濾波器138 4.3.4 鐵氧體抗干擾磁珠143 4.3.5 貫通濾波器146 4.3.6 電纜線濾波連接器149 4.3.7 PCB板濾波器件154 4.4 隔離技術155 4.4.1 光電隔離156 4.4.2 繼電器隔離160 4.4.3 變壓器隔離 161 4.4.4 布線隔離161 4.4.5 共模扼流圈162 4.5 電路平衡結構164 4.5.1 雙絞線在平衡電路中的使用164 4.5.2 同軸電纜的平衡結構165 4.5.3 差分放大器165 4.6 雙絞線的抗干擾原理及應用166 4.6.1 雙絞線的抗干擾原理166 4.6.2 雙絞線的應用168 4.7 信號線間的串擾及抑制169 4.7.1 線間串擾分析169 4.7.2 線間串擾的抑制173 4.8 信號線的選擇與敷設174 4.8.1 信號線型式的選擇174 4.8.2 信號線截面的選擇175 4.8.3 單股導線的阻抗分析175 4.8.4 信號線的敷設176 4.9 漏電干擾的防止措施177 4.10 抑制數字信號噪聲常用硬件措施177 4.10.1 數字信號負傳輸方式178 4.10.2 提高數字信號的電壓等級178 4.10.3 數字輸入信號的RC阻容濾波179 4.10.4 提高輸入端的門限電壓181 4.10.5 輸入開關觸點抖動干擾的抑制方法181 4.10.6 提高器件的驅動能力184 4.11 靜電放電干擾及其抑制184 第5章 主機單元配置與抗干擾設計 5.1 單片機主機單元組成特點186 5.1.1 80C51最小應用系統186 5.1.2 低功耗單片機最小應用系統187 5.2 總線的可靠性設計191 5.2.1 總線驅動器191 5.2.2 總線的負載平衡192 5.2.3 總線上拉電阻的配置192 5.3 芯片配置與抗干擾193 5.3.1去耦電容配置194 5.3.2 數字輸入端的噪聲抑制194 5.3.3 數字電路不用端的處理195 5.3.4 存儲器的布線196 5.4 譯碼電路的可靠性分析197 5.4.1 過渡干擾與譯碼選通197 5.4.2 譯碼方式與抗干擾200 5.5 時鐘電路配置200 5.6 復位電路設計201 5.6.1 復位電路RC參數的選擇201 5.6.2 復位電路的可靠性與抗干擾分析202 5.6.3 I/O接口芯片的延時復位205 5.7 單片機系統的中斷保護問題205 5.7.1 80C51單片機的中斷機構205 5.7.2 常用的幾種中斷保護措施205 5.8 RAM數據掉電保護207 5.8.1 片內RAM數據保護207 5.8.2 利用雙片選的外RAM數據保護207 5.8.3 利用DS1210實現外RAM數據保護208 5.8.4 2 KB非易失性隨機存儲器DS1220AB/AD211 5.9 看門狗技術215 5.9.1 由單穩態電路實現看門狗電路216 5.9.2 利用單片機片內定時器實現軟件看門狗217 5.9.3 軟硬件結合的看門狗技術219 5.9.4 單片機內配置看門狗電路221 5.10 微處理器監控器223 5.10.1 微處理器監控器MAX703~709/813L223 5.10.2 微處理器監控器MAX791227 5.10.3 微處理器監控器MAX807231 5.10.4 微處理器監控器MAX690A/MAX692A234 5.10.5 微處理器監控器MAX691A/MAX693A238 5.10.6 帶備份電池的微處理器監控器MAX1691242 5.11 串行E2PROM X25045245 第6章 測量單元配置與抗干擾設計 6.1 概述255 6.2 模擬信號放大器256 6.2.1 集成運算放大器256 6.2.2 測量放大器組成原理260 6.2.3 單片集成測量放大器AD521263 6.2.4 單片集成測量放大器AD522265 6.2.5 單片集成測量放大器AD526266 6.2.6 單片集成測量放大器AD620270 6.2.7 單片集成測量放大器AD623274 6.2.8 單片集成測量放大器AD624276 6.2.9 單片集成測量放大器AD625278 6.2.10 單片集成測量放大器AD626281 6.3 電壓/電流變換器(V/I)283 6.3.1 V/I變換電路..283 6.3.2 集成V/I變換器XTR101284 6.3.3 集成V/I變換器XTR110289 6.3.4 集成V/I變換器AD693292 6.3.5 集成V/I變換器AD694299 6.4 電流/電壓變換器(I/V)302 6.4.1 I/V變換電路302 6.4.2 RCV420型I/V變換器303 6.5 具有放大、濾波、激勵功能的模塊2B30/2B31305 6.6 模擬信號隔離放大器313 6.6.1 隔離放大器ISO100313 6.6.2 隔離放大器ISO120316 6.6.3 隔離放大器ISO122319 6.6.4 隔離放大器ISO130323 6.6.5 隔離放大器ISO212P326 6.6.6 由兩片VFC320組成的隔離放大器329 6.6.7 由兩光耦組成的實用線性隔離放大器333 6.7 數字電位器及其應用336 6.7.1 非易失性數字電位器x9221336 6.7.2 非易失性數字電位器x9241343 6.8 傳感器供電電源的配置及抗干擾346 6.8.1 傳感器供電電源的擾動補償347 6.8.2 單片集成精密電壓芯片349 6.8.3 A/D轉換器芯片提供基準電壓350 6.9 測量單元噪聲抑制措施351 6.9.1 外部噪聲源的干擾及其抑制351 6.9.2 輸入信號串模干擾的抑制352 6.9.3 輸入信號共模干擾的抑制353 6.9.4 儀器儀表的接地噪聲355 第7章 D/A、A/D單元配置與抗干擾設計 7.1 D/A、A/D轉換器的干擾源357 7.2 D/A轉換原理及抗干擾分析358 7.2.1 T型電阻D/A轉換器359 7.2.2 基準電源精度要求361 7.2.3 D/A轉換器的尖峰干擾362 7.3 典型D/A轉換器與單片機接口363 7.3.1 并行12位D/A轉換器AD667363 7.3.2 串行12位D/A轉換器MAX5154370 7.4 D/A轉換器與單片機的光電接口電路377 7.5 A/D轉換器原理與抗干擾性能378 7.5.1 逐次比較式ADC原理378 7.5.2 余數反饋比較式ADC原理378 7.5.3 雙積分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D轉換器與單片機接口387 7.6.18 位并行逐次比較式MAX 118387 7.6.28 通道12位A/D轉換器MAX 197394 7.6.3 雙積分式A/D轉換器5G14433399 7.6.4 V/F轉換器AD 652在A/D轉換器中的應用403 7.7 采樣保持電路與抗干擾措施408 7.8 多路模擬開關與抗干擾措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路開關配置與抗干擾技術413 7.9 D/A、A/D轉換器的電源、接地與布線416 7.10 精密基準電壓電路與噪聲抑制416 7.10.1 基準電壓電路原理417 7.10.2 引腳可編程精密基準電壓源AD584418 7.10.3 埋入式齊納二極管基準AD588420 7.10.4 低漂移電壓基準MAX676/MAX677/MAX678422 7.10.5 低功率低漂移電壓基準MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密電壓基準電路430 第8章 功率接口與抗干擾設計 8.1 功率驅動元件432 8.1.1 74系列功率集成電路432 8.1.2 75系列功率集成電路433 8.1.3 MOC系列光耦合過零觸發雙向晶閘管驅動器435 8.2 輸出控制功率接口電路438 8.2.1 繼電器輸出驅動接口438 8.2.2 繼電器—接觸器輸出驅動電路439 8.2.3 光電耦合器—晶閘管輸出驅動電路439 8.2.4 脈沖變壓器—晶閘管輸出電路440 8.2.5 單片機與大功率單相負載的接口電路441 8.2.6 單片機與大功率三相負載間的接口電路442 8.3 感性負載電路噪聲的抑制442 8.3.1 交直流感性負載瞬變噪聲的抑制方法442 8.3.2 晶閘管過零觸發的幾種形式445 8.3.3 利用晶閘管抑制感性負載的瞬變噪聲447 8.4 晶閘管變流裝置的干擾和抑制措施448 8.4.1 晶閘管變流裝置電氣干擾分析448 8.4.2 晶閘管變流裝置的抗干擾措施449 8.5 固態繼電器451 8.5.1 固態繼電器的原理和結構451 8.5.2 主要參數與選用452 8.5.3 交流固態繼電器的使用454 第9章 人機對話單元配置與抗干擾設計 9.1 鍵盤接口抗干擾問題456 9.2 LED顯示器的構造與特點458 9.3 LED的驅動方式459 9.3.1 采用限流電阻的驅動方式459 9.3.2 采用LM317的驅動方式460 9.3.3 串聯二極管壓降驅動方式462 9.4 典型鍵盤/顯示器接口芯片與單片機接口463 9.4.1 8位LED驅動器ICM 7218B463 9.4.2 串行LED顯示驅動器MAX 7219468 9.4.3 并行鍵盤/顯示器專用芯片8279482 9.4.4 串行鍵盤/顯示器專用芯片HD 7279A492 9.5 LED顯示接口的抗干擾措施502 9.5.1 LED靜態顯示接口的抗干擾502 9.5.2 LED動態顯示接口的抗干擾506 9.6 打印機接口與抗干擾技術508 9.6.1 并行打印機標準接口信號508 9.6.2 打印機與單片機接口電路509 9.6.3 打印機電磁干擾的防護設計510 9.6.4 提高數據傳輸可靠性的措施512 第10章 供電電源的配置與抗干擾設計 10.1 電源干擾問題概述513 10.1.1 電源干擾的類型513 10.1.2 電源干擾的耦合途徑514 10.1.3 電源的共模和差模干擾515 10.1.4 電源抗干擾的基本方法516 10.2 EMI電源濾波器517 10.2.1 實用低通電容濾波器518 10.2.2 雙繞組扼流圈的應用518 10.3 EMI濾波器模塊519 10.3.1 濾波器模塊基礎知識519 10.3.2 電源濾波器模塊521 10.3.3 防雷濾波器模塊531 10.3.4 脈沖群抑制模塊532 10.4 瞬變干擾吸收器件532 10.4.1 金屬氧化物壓敏電阻(MOV)533 10.4.2 瞬變電壓抑制器(TVS)537 10.5 電源變壓器的屏蔽與隔離552 10.6 交流電源的供電抗干擾方案553 10.6.1 交流電源配電方式553 10.6.2 交流電源抗干擾綜合方案555 10.7 供電直流側抑制干擾措施555 10.7.1 整流電路的高頻濾波555 10.7.2 串聯型直流穩壓電源配置與抗干擾556 10.7.3 集成穩壓器使用中的保護557 10.8 開關電源干擾的抑制措施559 10.8.1 開關噪聲的分類559 10.8.2 開關電源噪聲的抑制措施560 10.9 微機用不間斷電源UPS561 10.10 采用晶閘管無觸點開關消除瞬態干擾設計方案564 第11章 印制電路板的抗干擾設計 11.1 印制電路板用覆銅板566 11.1.1 覆銅板材料566 11.1.2 覆銅板分類568 11.1.3 覆銅板的標準與電性能571 11.1.4 覆銅板的主要特點和應用583 11.2 印制板布線設計基礎585 11.2.1 印制板導線的阻抗計算585 11.2.2 PCB布線結構和特性阻抗計算587 11.2.3 信號在印制板上的傳播速度589 11.3 地線和電源線的布線設計590 11.3.1 降低接地阻抗的設計590 11.3.2 減小電源線阻抗的方法591 11.4 信號線的布線原則592 11.4.1 信號傳輸線的尺寸控制592 11.4.2 線間串擾控制592 11.4.3 輻射干擾的抑制593 11.4.4 反射干擾的抑制594 11.4.5 微機自動布線注意問題594 11.5 配置去耦電容的方法594 11.5.1 電源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的選用與器件布局596 11.6.1 芯片選用指南596 11.6.2 器件的布局597 11.6.3 時鐘電路的布置598 11.7 多層印制電路板599 11.7.1 多層印制板的結構與特點599 11.7.2 多層印制板的布局方案600 11.7.3 20H原則605 11.8 印制電路板的安裝和板間配線606 第12章 軟件抗干擾原理與方法 12.1 概述607 12.1.1 測控系統軟件的基本要求607 12.1.2 軟件抗干擾一般方法607 12.2 指令冗余技術608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 軟件陷阱技術609 12.3.1 軟件陷阱609 12.3.2 軟件陷阱的安排610 12.4 故障自動恢復處理程序613 12.4.1 上電標志設定614 12.4.2 RAM中數據冗余保護與糾錯616 12.4.3 軟件復位與中斷激活標志617 12.4.4 程序失控后恢復運行的方法618 12.5 數字濾波619 12.5.1 程序判斷濾波法620 12.5.2 中位值濾波法620 12.5.3 算術平均濾波法621 12.5.4 遞推平均濾波法623 12.5.5 防脈沖干擾平均值濾波法624 12.5.6 一階滯后濾波法626 12.6 干擾避開法627 12.7 開關量輸入/輸出軟件抗干擾設計629 12.7.1 開關量輸入軟件抗干擾措施629 12.7.2 開關量輸出軟件抗干擾措施629 12.8 編寫軟件的其他注意事項630 附錄 電磁兼容器件選購信息632

    標簽: 單片機 應用系統 抗干擾技術

    上傳時間: 2013-10-20

    上傳用戶:xdqm

  • 基于DSP_BIOS的PLC執行系統開發

    分析了目前軟PLC在實時性方面存在的不足;提出采用基于DSP/BIOS實時內核的嵌入式處理器的軟PLC執行系統架構。首先,通過分析軟PLC執行系統的架構及工作原理,給出了基于DSP/BIOS的任務調度方案;其次,建立PLC指令的執行函數庫,確定PLC執行系統的運行流程;最后,對該PLC執行系統性能進行的測試表明,基于嵌入式處理器的軟PLC執行系統能有效地彌補軟PLC在實時性及穩定性方面的不足,在自動控制方面具有相當大的發展潛力。

    標簽: DSP_BIOS PLC 執行系統

    上傳時間: 2013-11-19

    上傳用戶:daoxiang126

  • 改進的Max-Log-Map譯碼算法的DSP實現

    針對傳統的Max-Log-Map譯碼算法時效性差、存儲空間開銷大的特點,本文對傳統的Max-Log-Map譯碼算法進行了改進。改進的算法對前、后向度量使用了蝶形結構圖,便于DSP實現;將原始幀均分為多個子塊,設計子塊間的并行運算以減小系統延遲;子塊內采取進一步地優化措施,以減小數據存儲量并提高譯碼速率。在DSP C6416平臺上的仿真結果表明了算法的可實現性與可靠性。

    標簽: Max-Log-Map DSP 譯碼算法

    上傳時間: 2013-11-08

    上傳用戶:a296386173

  • 基于DSP_BIOS大空間網絡型火災探測系統設計

    提出了以TMS320DM642為平臺開發基于DSP/BIOS的大空間網絡型火災探測系統。該系統在DSP/BIOS與RF5參考框架的基礎上,利用TCP/IP協議棧設計了多任務線程的應用程序,實現了火災檢測算法的移植與網絡開發環境的構建。最終將視頻處理結果由以太網傳至控制中心,同時控制中心可以利用串口通信線程對CCD攝像機進行參數設置。

    標簽: DSP_BIOS 空間網絡 火災探測 系統設計

    上傳時間: 2013-11-03

    上傳用戶:maricle

  • MATLAB與PSpice數據接口技術

    摘 要 瞬態仿真領域的許多工作需要獲得可視化數據, 仿真電路不能將輸出參數繪制成圖形時研究工作將受到很大影響. 而權威電路仿真軟件PSpice 在這個方面不盡如人意. 本文提出了一種有效的解決辦法: 通過MATLAB 編程搭建一個PSpice 與MATLAB 的數據接口,使PSpice輸出數據文件可以導入到MATLAB中繪制圖形. 這令我們能夠很方便地獲得數據的規律以有效地分析仿真結果, 這項技術對于教學和工程實踐都有比較實際的幫助.關鍵詞: 瞬態仿真 仿真程序 PSpice MATLAB 可視化數據The Data Transfer from Pspice to MATLABWu hao Ning yuanzhong Liang yingAbstract Many works in the area of transient simulation has shown how a emulator such asPSpice can be interfaced to an control analysis package such as MATLAB to get viewdata. Thepaper describes how such interfaces can be made using the MATLAB programming. The platformas a typical platform will solve the problem that PSpice software sometimes can not draw the datato a picture. It can make us find the rule from numerous data very expediently, so we can analyzethe outcome of the simulation. And it also can be used in the field of education.Keywords Transient Simulation Emulator PSpice MATLAB Viewdata1 引言科學研究和工程應用常需要進行電路仿真 PSpice可進行直流 交流 瞬態等基本電路特性分析 也可進行蒙托卡諾 MC 統計分析 最壞情況 Wcase 分析 優化設計等復雜電路特性分析 它是國際上仿真電路的權威軟件 而MATLAB的主要特點有 高效方便的矩陣和數組運算 編程效率高 結構化面向對象 方便的繪圖功能 用戶使用方便 工具箱功能強大 兩者各有著重點 兩種軟件結合應用 對研究工作有很重要的意義香港理工大學Y. S. LEE 等人首先將PSpice和MATLAB結合 開發了電力電子電路優化用的CAD 程序MATSPICE[6] 將兩者相結合的關鍵在于 如何用MATLAB 獲取PSpice的仿真數據 對此參考文獻 6 里沒有詳細敘述 本文著重說明用MATLAB 讀取PSpice仿真數據的具體方法本論文利用MATLAB對PSpice仿真出的數據處理繪制出后者無法得到或是效果不好的仿真圖形 下面就兩者結合使用的例子 進行具體說明

    標簽: MATLAB PSpice 數據 接口技術

    上傳時間: 2013-10-20

    上傳用戶:wuchunzhong

  • FPGA大西瓜開發板進階教程

    大西瓜FPGA開發板的教程,比較詳細。

    標簽: FPGA 開發板 進階 教程

    上傳時間: 2013-11-05

    上傳用戶:dudu121

  • PLC電梯控制系統的設計和檢測

      摘要: 隨著微電子技術和計算機技術的迅速發展,PLC(即可編程控制器)在工業控制領域內得到十分廣泛地應用。PLC是一種基于數字計算機技術、專為在工業環境下應用而設計的電子控制裝置,它采用可編程序的存儲器,用來存儲用戶指令,通過數字或模擬的輸入/輸出,完成一系列邏輯、順序、定時、記數、運算等確定的功能,來控制各種類型的機電一體化設備和生產過程。本文介紹了利用可編程控制器編寫的一個五層電梯的控制系統,檢驗電梯PLC控制系統的運行情況。實踐證明,PLC可遍程控制器和MCGS組態軟件結合有利于PLC控制系統的設計、檢測,具有良好的應用價值。   電梯是隨著高層建筑的興建而發展起來的一種垂直運輸工具。多層廠房和多層倉庫需要有貨梯;高層住宅需要有住宅梯;百貨大樓和賓館需要有客梯,自動扶梯等。在現代社會,電梯已像汽車、輪船一樣,成為人類不可缺少的交通運輸工具。據統計,美國每天乘電梯的人次多于乘載其它交通工具的人數。當今世界,電梯的使用量已成為衡量現代化程度的標志之一。追溯電梯這種升降設備的歷史,據說它起源于公元前236年的古希臘。當時有個叫阿基米德的人設計出--人力驅動的卷筒式卷揚機。1858年以蒸汽機為動力的客梯,在美國出現,繼而有在英國出現水壓梯。1889年美國的奧梯斯電梯公司首先使用電動機作為電梯動力,這才出現名副其實的電梯,并使電梯趨于實用化。1900年還出現了第一臺自動扶梯。1949年出現了群控電梯,首批4~6臺群控電梯在紐約的聯合國大廈被使用。1955年出現了小型計算機(真空管)控制電梯。1962年美國出現了速度達8米/秒的超高速電梯。1963年一些先進工業國只成了無觸點半導體邏輯控制電梯。1967年可控硅應用于電梯,使電梯的拖動系統筒化,性能提高。1971年集成電路被應用于電梯。第二年又出現了數控電梯。1976年微處理機開始用于電梯,使電梯的電氣控制進入了一個新的發展時期。   1電梯簡介   1.1電梯的基本分類   1.1.1按用途分類  ?、?乘客電梯:為運送乘客而設計的電梯。主用與賓館,飯店,辦公樓,大型商店等客流量大的場合。這類電梯為了提高運送效率,其運行速度比較快,自動化程度比較高。轎廂的尺寸和結構形式多為寬度大于深度,使乘客能暢通地進出。而且安全設施齊全,裝潢美觀。

    標簽: PLC 電梯控制系統 檢測

    上傳時間: 2013-11-18

    上傳用戶:yuanyuan123

  • 基于SPI接口和FIFO緩沖器的大容量高速實時數據存儲方案

    大容量高速實時數據存儲方案

    標簽: FIFO SPI 接口 大容量

    上傳時間: 2013-11-18

    上傳用戶:youke111

主站蜘蛛池模板: 上思县| 土默特左旗| 夏津县| 霍城县| 遂平县| 莲花县| 仪征市| 铜川市| 前郭尔| 五大连池市| 安国市| 黑龙江省| 清涧县| 伊宁县| 阿拉善盟| 历史| 东乡县| 景德镇市| 正镶白旗| 皋兰县| 沁源县| 普定县| 内黄县| 称多县| 五家渠市| 镇安县| 蒙阴县| 镇雄县| 河间市| 临沭县| 兴业县| 万全县| 福州市| 兴文县| 平山县| 清丰县| 黄梅县| 阆中市| 五寨县| 金川县| 合山市|