亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

推挽功放電路

  • 受一篇網(wǎng)文啟發(fā)

    受一篇網(wǎng)文啟發(fā),用ATmega88模擬數(shù)字功放,音源信號(hào)從AD5輸入,PB1/PB2給出互補(bǔ)推挽的功率管驅(qū)動(dòng)信號(hào),也可直接接揚(yáng)聲器,已試驗(yàn)成功。

    標(biāo)簽:

    上傳時(shí)間: 2016-07-01

    上傳用戶:wl9454

  • 運(yùn)算放大器

    理想的放大器 目前,廠商在線性IC研發(fā)上都有重大的突破。使IC型運(yùn)算放大器的特性和理想相當(dāng)接近。尤其在低頻操作下,OP Amp電路的工作情形實(shí)在太像一個(gè)理想放大器,幾乎與理論的推測(cè)完全相符。→理想的放大器該具備什麼特性?

    標(biāo)簽: 算放大器原理

    上傳時(shí)間: 2016-07-16

    上傳用戶:WALTER

  • STC8H實(shí)驗(yàn)箱原理圖參考程序與STC8G相通軟件工程源碼

    更新記錄2020.08.271.  添加例程“45-IO口推挽輸出驅(qū)動(dòng)有源蜂鳴器實(shí)驗(yàn)程序”;2. 修改例程“43-高級(jí)PWM4N驅(qū)動(dòng)蜂鳴器實(shí)驗(yàn)程序”名稱為“43-高級(jí)PWM4N驅(qū)動(dòng)無源蜂鳴器實(shí)驗(yàn)程序”;3. 添加例程“46-端口模式設(shè)置”;4. 添加例程“47-SPI互為主從-SS設(shè)置主從-串口1透?jìng)鳌保?. 添加例程“48-SPI互為主從-主模式忽略SS-串口1透?jìng)鳌薄?020.08.201.  例程“31-硬件SPI訪問FLASH-PM25LV040-串口1監(jiān)控”、“32-IO模擬SPI訪問FLASH-PM25LV040-串口1監(jiān)控”兼容華邦W25X40CL型號(hào)Flash,并添加W25X40CL規(guī)格書。2020.08.181.  添加例程“44-高級(jí)PWM輸出兩路互補(bǔ)SPWM”以及正弦計(jì)算表。2020.08.111.  按照8.3版本實(shí)驗(yàn)箱圖紙修改現(xiàn)有例程;2.  添加例程“43-高級(jí)PWM4N驅(qū)動(dòng)蜂鳴器實(shí)驗(yàn)程序”。2020.07.301.  在例程01添加注解“當(dāng)用戶使用硬件 USB 對(duì) STC8H8K64U 系列進(jìn)行 ISP 下載時(shí)不能調(diào)節(jié)內(nèi)部 IRC 的頻率,但用戶可用選擇內(nèi)部預(yù)置的 16 個(gè)頻率(分別是 5.5296M、 6M、 11.0592M、 12M、 18.432M、 20M、 22.1184M、 24M、27M、 30M、 33.1776M、 35M、 36.864M、 40M、 44.2368M 和 48M)。下載時(shí)用戶只能從頻率下拉列表中進(jìn)行選擇其中之一,而不能手動(dòng)輸入其他頻率。”2. 添加例程“41-軟件修改內(nèi)部RC主頻”;3. 添加例程“42-一線制溫度傳感器 DS18B20 測(cè)溫”;4. 添加8.2版本實(shí)驗(yàn)箱的原理圖跟PCB圖,現(xiàn)有程序還是基于8.1版本圖紙。2020.07.241.  例程“38-2.4寸ILI9325驅(qū)動(dòng)TFT顯示屏實(shí)驗(yàn)程序-帶觸摸功能”調(diào)整驅(qū)動(dòng)讀寫代碼,使正常顯示時(shí)的MCU工作主頻最高可調(diào)至48MHz。2.  修改ADC相關(guān)例程關(guān)于AD通道參數(shù)的注釋。3.  修改EEPRO相關(guān)例程TPS擦除等待參數(shù)與設(shè)置主頻一致。4. 添加例程“39-通過USB發(fā)送命令讀取ADC測(cè)試程序”以及配套的上位機(jī)測(cè)試軟件;5. 添加例程“40-USB鍵盤設(shè)備通過P0口矩陣按鍵模擬小鍵盤功能”以及鍵盤按鍵碼表。2020.07.091.  添加例程“37-2.4寸ILI9341驅(qū)動(dòng)TFT顯示屏實(shí)驗(yàn)程序”以及相關(guān)工具及規(guī)格書;2.  添加例程“38-2.4寸ILI9325驅(qū)動(dòng)TFT顯示屏實(shí)驗(yàn)程序-帶觸摸功能”以及相關(guān)工具及規(guī)格書。2020.06.281.  添加例程“35-板上的32K xdata測(cè)試程序”;2.  添加例程“36-LCD128x64顯示圖形文字-ST7920”以及“ST7920規(guī)格書”。2020.06.231.  添加例程“30-紅外發(fā)射程序(NEC碼)-使用PWM4產(chǎn)生38KHz載波”;2.  添加例程“34-IO掃描鍵紅外發(fā)射-同時(shí)接收數(shù)碼管顯示用戶碼鍵值程序”。2020.06.221.  添加例程“31-硬件SPI訪問FLASH-PM25LV040-串口1監(jiān)控”以及“PM25LV040規(guī)格書”;2.  添加例程“32-IO模擬SPI訪問FLASH-PM25LV040-串口1監(jiān)控”;3.  添加例程“33-P1.3做ADC-使用內(nèi)部基準(zhǔn)計(jì)算外部電壓”。2020.06.191.  添加例程“28-I2C主機(jī)模式訪問PCF8563-RTC時(shí)鐘程序”以及“PCF8563規(guī)格書”;2.  添加例程“29-紅外遙控接收程序(NEC碼)-數(shù)碼管顯示用戶地址和鍵值”。2020.06.181.  更改文件夾命名,使例程內(nèi)容更加一目了然;2.  添加例程“04-利用T0,T1做外部計(jì)數(shù)器”;3.  添加例程“05-利用定時(shí)器測(cè)量脈沖寬度”;4.  添加例程“13-串口3中斷模式與電腦收發(fā)測(cè)試”;5.  添加例程“14-串口4中斷模式與電腦收發(fā)測(cè)試”;6.  添加例程“20-使用比較器檢測(cè)低電壓時(shí)保存數(shù)據(jù)到EEPROM”;7.  添加例程“25-高級(jí)PWM1-PWM2-PWM3-PWM4,驅(qū)動(dòng)P6口呼吸燈實(shí)驗(yàn)程序”;8.  添加例程“26-高級(jí)PWM5-PWM6-PWM7-PWM8輸出測(cè)試程序”;9.  修改串口相關(guān)例程的主時(shí)鐘頻率為 22.1184MHz,精確計(jì)算115200波特率;10.“17-NTC測(cè)溫度數(shù)碼管顯示”添加“SNDT2012X103F3950FTF R-T對(duì)照表”;11.添加“實(shí)驗(yàn)箱8問題清單”文件。2020.06.151.  修改所有例程主時(shí)鐘頻率為 24MHz;2.  添加例程“08-雙串口中斷收發(fā)”;3.  添加例程“09-串口1中斷收發(fā)”;4.  添加例程“10-串口2中斷收發(fā)”;5.  添加例程“14-通過串口1命令多字節(jié)讀寫EEPROM測(cè)試程序”;6.  添加例程“15-內(nèi)部掉電檢測(cè)中斷保存EEPROM”;7.  添加例程“17-P1.7輸出PWM5做DAC_P1.1做ADC讀入DAC輸出值_串口1設(shè)置占空比”;8.  修改例程“比較器”命名為“18-比較器_P3.7做正極輸入源”;9.  添加例程“19-比較器_ADC做正極輸入源”;10.添加例程“20-I2C從機(jī)中斷模式與IO口模擬I2C主機(jī)進(jìn)行自發(fā)自收”。2020.06.081.  添加例程“16-P1.7輸出PWM做DAC_P1.1做ADC讀入DAC輸出值_串口1設(shè)置占空比”;2.  添加例程“比較器”。2020.06.041.  初版發(fā)布;2.  發(fā)布例程“01-跑馬燈”;3.  發(fā)布例程“02-Timer0-Timer1-Timer2-Timer3-Timer4測(cè)試程序”;4.  發(fā)布例程“03-數(shù)碼管”;5.  發(fā)布例程“04-外中斷INT0-INT1-INT2-INT3- INT4測(cè)試”;6.  發(fā)布例程“05-睡眠-外部中斷喚醒”;7.  發(fā)布例程“06-睡眠-喚醒定時(shí)器喚醒”;8.  發(fā)布例程“07-看門狗復(fù)位測(cè)試程序”;9.  發(fā)布例程“11-IO行列掃描鍵盤數(shù)碼管顯示鍵值和調(diào)整時(shí)間”;10.發(fā)布例程“12-ADC鍵盤掃描數(shù)碼管顯示鍵值和調(diào)整時(shí)間”;11.發(fā)布例程“13-NTC測(cè)溫度數(shù)碼管顯示”;12.發(fā)布文件“STC實(shí)驗(yàn)箱8-使用說明書.pdf”;13.發(fā)布圖紙“實(shí)驗(yàn)箱8.1_2020-05-11-PCB.pdf”;14.發(fā)布圖紙“實(shí)驗(yàn)箱8.1_2020-05-11-SCH.pdf”。

    標(biāo)簽: stc8h

    上傳時(shí)間: 2022-04-18

    上傳用戶:

  • 基于AVR單片機(jī)的超聲波電源的研究

    隨著新理論、新器件、新技術(shù)的不斷出現(xiàn)或成熟,功率超聲技術(shù)在國民經(jīng)濟(jì)各個(gè)部門中日益廣泛應(yīng)用。超聲波電源為超聲波換能器提供電能,超聲波換能器將電能轉(zhuǎn)換為動(dòng)能,完成超聲波清洗、防垢除垢等功能。本文主要對(duì)高頻超聲波電源進(jìn)行了理論分析與設(shè)計(jì)。    首先對(duì)超聲波電源基本拓?fù)浣Y(jié)構(gòu)進(jìn)行了分析,提出了超聲波電源功放電路可以采用的三種方案:半橋功率放大電路、全橋功率放大電路、推挽功率放大電路。通過對(duì)比分析了各種方案的優(yōu)點(diǎn)和缺點(diǎn),確定了超聲波電源功率放大電路的方案。針對(duì)超聲波電源的具體要求,設(shè)計(jì)了整流濾波電路,功率放大電路、驅(qū)動(dòng)電路、緩沖電路、功率反饋電路、保護(hù)電路。其中,給出了整流濾波電路和功率放大電路的參數(shù)計(jì)算。    其次對(duì)超聲波換能器的特性進(jìn)行了分析,介紹了超聲波換能器的串聯(lián)諧振頻率和并聯(lián)諧振頻率。然后對(duì)幾種常用的匹配網(wǎng)絡(luò)進(jìn)行了分析,包括單個(gè)電感的匹配、電感-電容匹配、改進(jìn)的電感-電容匹配,分析了其優(yōu)點(diǎn)和缺點(diǎn)。    然后由于超聲波電源需具有性能高、功率大、成本低的特點(diǎn),要求能較好適應(yīng)超聲波換能器阻抗變化、頻率漂移等所帶來的疑難問題。本文介紹了超聲波電源幾種常見的頻率跟蹤方案。本文研究的是一種傳統(tǒng)的自激式超聲波電源,串聯(lián)諧振頻率在20KHz左右,頻率跟蹤采用負(fù)載分壓式反饋系統(tǒng),在以前手動(dòng)調(diào)節(jié)電感的基礎(chǔ)上,通過在反饋回路添加通過AVR單片機(jī)控制數(shù)字電感來跟蹤超聲波換能器的諧振頻率,易操作,能穩(wěn)定運(yùn)行。    最后在理論設(shè)計(jì)的基礎(chǔ)上,對(duì)超聲波電源各個(gè)組成電路進(jìn)行了實(shí)際制作,在超聲波電源與超聲波換能器匹配無誤、工作穩(wěn)定后,對(duì)有關(guān)電路進(jìn)行了現(xiàn)場(chǎng)試驗(yàn)驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,該超聲波電源具有一定的使用價(jià)值。

    標(biāo)簽: avr單片機(jī) 超聲波電源

    上傳時(shí)間: 2022-06-08

    上傳用戶:

  • 基于DSP的光伏并網(wǎng)逆變系統(tǒng)的研究.rar

    隨著人類生活水平的提高,人們對(duì)能源的需求也日益提高。太陽能作為一種新型的綠色可再生能源,具有儲(chǔ)量大、利用經(jīng)濟(jì)、清潔環(huán)保等優(yōu)點(diǎn)。因此,太陽能的利用越來越受到人們的重視,而太陽能光伏發(fā)電技術(shù)的應(yīng)用更是人們普遍關(guān)注的焦點(diǎn)。在不久的將來,太陽能光伏利用的主要形式將是并網(wǎng)發(fā)電系統(tǒng)。高性能的數(shù)字信號(hào)處理器芯片(DSP)的出現(xiàn),使得一些先進(jìn)的控制策略應(yīng)用于光伏并網(wǎng)的控制成為可能。 一套基本的光伏并網(wǎng)發(fā)電系統(tǒng)一般是由太陽能電池板、太陽能控制器和逆變器構(gòu)成。其中,太陽能控制器和逆變器是光伏并網(wǎng)系統(tǒng)的核心部分,本文針對(duì)如何提高太陽能光伏并網(wǎng)系統(tǒng)的轉(zhuǎn)換效率,從建模仿真方面對(duì)具有最大功率點(diǎn)跟蹤的光伏并網(wǎng)系統(tǒng)進(jìn)行了研究。首先,概述了太陽能光伏發(fā)電系統(tǒng)的組成,介紹了目前我國太陽能光伏發(fā)電技術(shù)的應(yīng)用。其次,使用MATLAB中的POWER SYSTEM BLOCKSETS 工具軟件建立了光伏并網(wǎng)發(fā)電系統(tǒng)的動(dòng)態(tài)模型,并進(jìn)行了仿真,給具體的硬件設(shè)計(jì)提供了極為有效的幫助。再次,通過比較幾種常用的DC/DC 變換器的工作原理,提出利用推挽式DC/DC 變換器實(shí)現(xiàn)轉(zhuǎn)換,對(duì)參數(shù)進(jìn)行分析后建立了推挽式DC/DC 變換器的仿真模型。MPPT(最大功率點(diǎn)跟蹤)是光伏系統(tǒng)中經(jīng)常遇見的問題。本文詳細(xì)地分析了常用的幾種MPPT 方案,并提出了幾種新的MPPT 方案。分析了基于DSP 芯片(TMS320F240)的光伏并網(wǎng)發(fā)電系統(tǒng)的控制設(shè)計(jì)思想。采用電網(wǎng)電壓前饋和電流跟蹤技術(shù),建立了相關(guān)的控制模型,實(shí)現(xiàn)了網(wǎng)側(cè)電流正弦化和單位功率因數(shù)。最后本文結(jié)合實(shí)際系統(tǒng)給出了SPWM的設(shè)計(jì)方案和軟件流程圖。

    標(biāo)簽: DSP 光伏并網(wǎng) 逆變系統(tǒng)

    上傳時(shí)間: 2013-07-22

    上傳用戶:jcljkh

  • 超聲波電機(jī)小型控制驅(qū)動(dòng)系統(tǒng)的實(shí)用性研究.rar

    超聲波電機(jī)是上個(gè)世紀(jì)八十年代逐步發(fā)展起來的新型微電機(jī)。它利用壓電陶瓷逆壓電效應(yīng)激發(fā)的超聲振動(dòng)作為驅(qū)動(dòng)力,通過定轉(zhuǎn)子間的摩擦力來驅(qū)動(dòng)轉(zhuǎn)子運(yùn)動(dòng)。與傳統(tǒng)的電磁馬達(dá)相比,它具有低速大轉(zhuǎn)矩、無電磁干擾、動(dòng)作相應(yīng)快、運(yùn)行無噪聲、無輸入時(shí)能自鎖等卓越特性,在非連續(xù)運(yùn)動(dòng)領(lǐng)域、精密控制領(lǐng)域要比傳統(tǒng)的電磁電機(jī)性能優(yōu)越得多。目前,旋轉(zhuǎn)型超聲波電機(jī),尤其是環(huán)形行波型超聲波電機(jī),在工業(yè)、辦公、過程自動(dòng)化等領(lǐng)域的伺服系統(tǒng)中作為直接驅(qū)動(dòng)執(zhí)行器得到廣泛的關(guān)注。 本論文主要研究并設(shè)計(jì)了用于超聲波電機(jī)控制驅(qū)動(dòng)的小型控制系統(tǒng)。其目的是針對(duì)市場(chǎng)需要,提供給用戶一種價(jià)格較低、體積小、性能指標(biāo)適中,操作簡便,能夠?qū)崿F(xiàn)快速定位,速度可調(diào)節(jié)的標(biāo)準(zhǔn)的閉環(huán)控制器。 控制器的核心為MSP430F167。課題對(duì)外圍檢測(cè)、控制、驅(qū)動(dòng)電路進(jìn)行相關(guān)的研究和設(shè)計(jì),并按照控制器的需求設(shè)計(jì)相應(yīng)的軟件。最后給出實(shí)驗(yàn)結(jié)果:系統(tǒng)運(yùn)行穩(wěn)定,速度曲線較為理想,達(dá)到了最初的設(shè)計(jì)要求。 系統(tǒng)總結(jié)了超聲波電機(jī)的發(fā)展、特點(diǎn)、分類,通過與傳統(tǒng)電磁電機(jī)的對(duì)比給出了超聲波電機(jī)的廣闊的應(yīng)用前景。在此基礎(chǔ)上,指出了超聲波電機(jī)研究的發(fā)展方向,明確了本文的研究內(nèi)容。 總結(jié)了環(huán)形行波型超聲波電機(jī)的結(jié)構(gòu)特點(diǎn)、運(yùn)行機(jī)理,并在此基礎(chǔ)上總結(jié)了環(huán)形行波型超聲波電機(jī)調(diào)頻、調(diào)相、調(diào)幅等控制方法以及推挽、半橋和全橋驅(qū)動(dòng)逆變電路的優(yōu)缺點(diǎn)。 本課題設(shè)計(jì)了基于超聲波電機(jī)的控制驅(qū)動(dòng)系統(tǒng)電路。首先,提出了本次設(shè)計(jì)的設(shè)計(jì)思想及目的;其次,介紹了本設(shè)計(jì)的控制器硬件電路具體設(shè)計(jì)過程以及調(diào)頻調(diào)速的實(shí)現(xiàn)方式。然后,詳細(xì)介紹了該控制系統(tǒng)的軟件構(gòu)成,包括上位機(jī)軟件、下位機(jī)軟件以及通訊部分。詳細(xì)闡述了在本控制系統(tǒng)中的調(diào)速、定位原理。最后通過實(shí)驗(yàn)結(jié)果說明了該小型控制系統(tǒng)的有效性。

    標(biāo)簽: 超聲波 電機(jī) 控制驅(qū)動(dòng)

    上傳時(shí)間: 2013-07-18

    上傳用戶:caixiaoxu26

  • 車載數(shù)字開關(guān)電源的研究與實(shí)現(xiàn).rar

    在以節(jié)能、環(huán)保和安全為中心的現(xiàn)代汽車中,電氣設(shè)備越來越多,電氣負(fù)荷越來越大,用新的42V車載電源系統(tǒng)取代現(xiàn)有的14V電源系統(tǒng)將是大勢(shì)所趨。目前車載開關(guān)電源大都采用模擬控制方案,具有很多缺點(diǎn),因此非常有必要研究數(shù)字控制方案,以便提高變換性能。鑒于此,開展了以車載數(shù)字開關(guān)電源的理論與設(shè)計(jì)為對(duì)象的研究內(nèi)容: 基于L4981B的Boost DC/DC變換器的實(shí)現(xiàn)。在Boost DC/DC變換器理論分析的基礎(chǔ)上,利用有源PFC電路板,基于模擬控制器L4981B制作成最大輸出功率1kW的24VDC-42VDC變換器。 基于TL494的推挽DC/DC和Boost DC/DC變換器的實(shí)現(xiàn)。在推挽變換器理論分析的基礎(chǔ)上,基于模擬控制器TL494進(jìn)行了功率電路、控制電路和保護(hù)電路的原理圖設(shè)計(jì)和PCB設(shè)計(jì),制作成最大輸出功率0.5kW、系統(tǒng)效率87%的24VDC-42VDC車載開關(guān)電源。利用此電路板,基于模擬控制器TL494制作成最大輸出功率1kW的24VDC-42VDC變換器。 基于TMS320F2808的Boost DC/DC變換器和單相逆變器的實(shí)現(xiàn)。在Boost DC/DC變換器和單相逆變器相關(guān)理論分析的基礎(chǔ)上,采用數(shù)字PI控制,基于數(shù)字控制器TMS320F2808進(jìn)行了功率電路、輸出電壓閉環(huán)控制電路、檢測(cè)電路和驅(qū)動(dòng)電路的原理圖設(shè)計(jì)和PCB設(shè)計(jì)以及軟件設(shè)計(jì),制作成額定輸出功率0.5kW、系統(tǒng)效率86%的24VDC-42VDC車載數(shù)字開關(guān)電源和24VDC-97VDC-330VDC、42VDC-24VAC變換器。

    標(biāo)簽: 車載 數(shù)字 開關(guān)電源

    上傳時(shí)間: 2013-07-04

    上傳用戶:dong

  • 高速低壓低功耗CMOSBiCMOS運(yùn)算放大器設(shè)計(jì).rar

    近年來,以電池作為電源的微電子產(chǎn)品得到廣泛使用,因而迫切要求采用低電源電壓的模擬電路來降低功耗。目前低電壓、低功耗的模擬電路設(shè)計(jì)技術(shù)正成為微電子行業(yè)研究的熱點(diǎn)之一。 在模擬集成電路中,運(yùn)算放大器是最基本的電路,所以設(shè)計(jì)低電壓、低功耗的運(yùn)算放大器非常必要。在實(shí)現(xiàn)低電壓、低功耗設(shè)計(jì)的過程中,必須考慮電路的主要性能指標(biāo)。由于電源電壓的降低會(huì)影響電路的性能,所以只實(shí)現(xiàn)低壓、低功耗的目標(biāo)而不實(shí)現(xiàn)優(yōu)良的性能(如高速)是不大妥當(dāng)?shù)摹?論文對(duì)國內(nèi)外的低電壓、低功耗模擬電路的設(shè)計(jì)方法做了廣泛的調(diào)查研究,分析了這些方法的工作原理和各自的優(yōu)缺點(diǎn),在吸收這些成果的基礎(chǔ)上設(shè)計(jì)了一個(gè)3.3 V低功耗、高速、軌對(duì)軌的CMOS/BiCMOS運(yùn)算放大器。在設(shè)計(jì)輸入級(jí)時(shí),選擇了兩級(jí)直接共源一共柵輸入級(jí)結(jié)構(gòu);為穩(wěn)定運(yùn)放輸出共模電壓,設(shè)計(jì)了共模負(fù)反饋電路,并進(jìn)行了共模回路補(bǔ)償;在偏置電路設(shè)計(jì)中,電流鏡負(fù)載并不采用傳統(tǒng)的標(biāo)準(zhǔn)共源-共柵結(jié)構(gòu),而是采用適合在低壓工況下的低壓、寬擺幅共源-共柵結(jié)構(gòu);為了提高效率,在設(shè)計(jì)時(shí)采用了推挽共源極放大器作為輸出級(jí),輸出電壓擺幅基本上達(dá)到了軌對(duì)軌;并采用帶有調(diào)零電阻的密勒補(bǔ)償技術(shù)對(duì)運(yùn)放進(jìn)行頻率補(bǔ)償。 采用標(biāo)準(zhǔn)的上華科技CSMC 0.6μpm CMOS工藝參數(shù),對(duì)整個(gè)運(yùn)放電路進(jìn)行了設(shè)計(jì),并通過了HSPICE軟件進(jìn)行了仿真。結(jié)果表明,當(dāng)接有5 pF負(fù)載電容和20 kΩ負(fù)載電阻時(shí),所設(shè)計(jì)的CMOS運(yùn)放的靜態(tài)功耗只有9.6 mW,時(shí)延為16.8ns,開環(huán)增益、單位增益帶寬和相位裕度分別達(dá)到82.78 dB,52.8 MHz和76°,而所設(shè)計(jì)的BiCMOS運(yùn)放的靜態(tài)功耗達(dá)到10.2 mW,時(shí)延為12.7 ns,開環(huán)增益、單位增益帶寬和相位裕度分別為83.3 dB、75 MHz以及63°,各項(xiàng)技術(shù)指標(biāo)都達(dá)到了設(shè)計(jì)要求。

    標(biāo)簽: CMOSBiCMOS 低壓 低功耗

    上傳時(shí)間: 2013-06-29

    上傳用戶:saharawalker

  • 射頻與微波功率放大器設(shè)計(jì).rar

    本書主要闡述設(shè)計(jì)射頻與微波功率放大器所需的理論、方法、設(shè)計(jì)技巧,以及將分析計(jì)算與計(jì)算機(jī)輔助設(shè)計(jì)相結(jié)合的優(yōu)化設(shè)計(jì)方法。這些方法提高了設(shè)計(jì)效率,縮短了設(shè)計(jì)周期。本書內(nèi)容覆蓋非線性電路設(shè)計(jì)方法、非線性主動(dòng)設(shè)備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設(shè)計(jì)、寬帶功率放大器及通信系統(tǒng)中的功率放大器設(shè)計(jì)。  本書適合從事射頻與微波動(dòng)功率放大器設(shè)計(jì)的工程師、研究人員及高校相關(guān)專業(yè)的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設(shè)計(jì)工程師,他曾經(jīng)任教于澳大利亞Linz大學(xué)、新加坡微電子學(xué)院、莫斯科通信和信息技術(shù)大學(xué)。他目前正在講授研究班課程,在該班上,本書作為國際微波年會(huì)論文集。 目錄 第1章 雙口網(wǎng)絡(luò)參數(shù)  1.1 傳統(tǒng)的網(wǎng)絡(luò)參數(shù)  1.2 散射參數(shù)  1.3 雙口網(wǎng)絡(luò)參數(shù)間轉(zhuǎn)換  1.4 雙口網(wǎng)絡(luò)的互相連接  1.5 實(shí)際的雙口電路   1.5.1 單元件網(wǎng)絡(luò)   1.5.2 π形和T形網(wǎng)絡(luò)  1.6 具有公共端口的三口網(wǎng)絡(luò)  1.7 傳輸線  參考文獻(xiàn) 第2章 非線性電路設(shè)計(jì)方法  2.1 頻域分析   2.1.1 三角恒等式法   2.1.2 分段線性近似法   2.1.3 貝塞爾函數(shù)法  2.2 時(shí)域分析  2.3 NewtOn.Raphscm算法  2.4 準(zhǔn)線性法  2.5 諧波平衡法  參考文獻(xiàn) 第3章 非線性有源器件模型  3.1 功率MOSFET管   3.1.1 小信號(hào)等效電路   3.1.2 等效電路元件的確定   3.1.3 非線性I—V模型   3.1.4 非線性C.V模型   3.1.5 電荷守恒   3.1.6 柵一源電阻   3.1.7 溫度依賴性  3.2 GaAs MESFET和HEMT管   3.2.1 小信號(hào)等效電路   3.2.2 等效電路元件的確定   3.2.3 CIJrtice平方非線性模型   3.2.4 Curtice.Ettenberg立方非線性模型   3.2.5 Materka—Kacprzak非線性模型   3.2.6 Raytheon(Statz等)非線性模型   3.2.7 rrriQuint非線性模型   3.2.8 Chalmers(Angek)v)非線性模型   3.2.9 IAF(Bemth)非線性模型   3.2.10 模型選擇  3.3 BJT和HBT汀管   3.3.1 小信號(hào)等效電路   3.3.2 等效電路中元件的確定   3.3.3 本征z形電路與T形電路拓?fù)渲g的等效互換   3.3.4 非線性雙極器件模型  參考文獻(xiàn) 第4章 阻抗匹配  4.1 主要原理  4.2 Smith圓圖  4.3 集中參數(shù)的匹配   4.3.1 雙極UHF功率放大器   4.3.2 M0SFET VHF高功率放大器  4.4 使用傳輸線匹配   4.4.1 窄帶功率放大器設(shè)計(jì)   4.4.2 寬帶高功率放大器設(shè)計(jì)  4.5 傳輸線類型   4.5.1 同軸線   4.5.2 帶狀線   4.5.3 微帶線   4.5.4 槽線   4.5.5 共面波導(dǎo)  參考文獻(xiàn) 第5章 功率合成器、阻抗變換器和定向耦合器  5.1 基本特性  5.2 三口網(wǎng)絡(luò)  5.3 四口網(wǎng)絡(luò)  5.4 同軸電纜變換器和合成器  5.5 wilkinson功率分配器  5.6 微波混合橋  5.7 耦合線定向耦合器  參考文獻(xiàn) 第6章 功率放大器設(shè)計(jì)基礎(chǔ)  6.1 主要特性  6.2 增益和穩(wěn)定性  6.3 穩(wěn)定電路技術(shù)   6.3.1 BJT潛在不穩(wěn)定的頻域   6.3.2 MOSFET潛在不穩(wěn)定的頻域   6.3.3 一些穩(wěn)定電路的例子  6.4 線性度  6.5 基本的工作類別:A、AB、B和C類  6.6 直流偏置  6.7 推挽放大器  6.8 RF和微波功率放大器的實(shí)際外形  參考文獻(xiàn) 第7章 高效率功率放大器設(shè)計(jì)  7.1 B類過激勵(lì)  7.2 F類電路設(shè)計(jì)  7.3 逆F類  7.4 具有并聯(lián)電容的E類  7.5 具有并聯(lián)電路的E類  7.6 具有傳輸線的E類  7.7 寬帶E類電路設(shè)計(jì)  7.8 實(shí)際的高效率RF和微波功率放大器  參考文獻(xiàn) 第8章 寬帶功率放大器  8.1 Bode—Fan0準(zhǔn)則  8.2 具有集中元件的匹配網(wǎng)絡(luò)  8.3 使用混合集中和分布元件的匹配網(wǎng)絡(luò)  8.4 具有傳輸線的匹配網(wǎng)絡(luò)    8.5 有耗匹配網(wǎng)絡(luò)  8.6 實(shí)際設(shè)計(jì)一瞥  參考文獻(xiàn) 第9章 通信系統(tǒng)中的功率放大器設(shè)計(jì)  9.1 Kahn包絡(luò)分離和恢復(fù)技術(shù)  9.2 包絡(luò)跟蹤  9.3 異相功率放大器  9.4 Doherty功率放大器方案  9.5 開關(guān)模式和雙途徑功率放大器  9.6 前饋線性化技術(shù)  9.7 預(yù)失真線性化技術(shù)  9.8 手持機(jī)應(yīng)用的單片cMOS和HBT功率放大器  參考文獻(xiàn)

    標(biāo)簽: 射頻 微波功率 放大器設(shè)計(jì)

    上傳時(shí)間: 2013-04-24

    上傳用戶:W51631

  • 軟開關(guān)PWM雙向DCDC變換器的研究.rar

    隨著電力電子技術(shù)的迅速發(fā)展,雙向DC/DC變換器的應(yīng)用日益廣泛。尤其是軟開關(guān)技術(shù)的出現(xiàn),使雙向DC/DC變換器不斷朝著高效化、小型化、高頻化和高性能化的方向發(fā)展,軟開關(guān)技術(shù)的應(yīng)用可以降低雙向DC/DC變換器的開關(guān)損耗,提高變換器的工作效率,為變換器的高頻化提供可能性,從而減小變換器的體積,提高變換器的動(dòng)態(tài)性能。雙向DC/DC變換器在直流不停電電源系統(tǒng)、航空電源系統(tǒng)、電動(dòng)汽車等車載電源系統(tǒng)、直流功率放大器以及蓄電池儲(chǔ)能等場(chǎng)合都得到了廣泛的應(yīng)用。 本論文首先在研究硬開關(guān)的缺陷上,提出軟開關(guān)技術(shù);然后在研究雙向DC/DC變換器的基本工作原理的基礎(chǔ)上,對(duì)雙向DC/DC變換器的應(yīng)用及軟開關(guān)雙向DC/DC變換器的幾種拓?fù)浣Y(jié)構(gòu)進(jìn)一步闡述;把軟開關(guān)技術(shù)和雙向DC/DC變換器技術(shù)有機(jī)地結(jié)合在一起,提出一種新型的雙向DC/DC變換器的拓?fù)浣Y(jié)構(gòu)。該雙向DC/DC變換器的降壓變換電路采用移相控制ZVSPWMDC/DC變換器;升壓變換電路采用Boost升壓和推挽式升壓兩種變換器相結(jié)合的兩級(jí)升壓的新型變換器。 在分別對(duì)移相控制ZVSPWMDC/DC變換器和Boost推挽式DC/DC變換器的工作原理進(jìn)行分析研究的基礎(chǔ)上,使用PSpice9.2計(jì)算機(jī)仿真軟件對(duì)變換器的主電路進(jìn)行仿真和分析,驗(yàn)證該新型雙向DC/DC變換器的拓?fù)浣Y(jié)構(gòu)設(shè)計(jì)的正確性和可行性。

    標(biāo)簽: DCDC PWM 軟開關(guān)

    上傳時(shí)間: 2013-04-24

    上傳用戶:2525775

主站蜘蛛池模板: 沈阳市| 岑巩县| 屯门区| 博白县| 云南省| 岫岩| 台湾省| 内丘县| 乐都县| 梨树县| 南靖县| 焦作市| 南乐县| 广河县| 穆棱市| 专栏| 兴文县| 宁南县| 互助| 西青区| 奇台县| 西青区| 黎城县| 苍溪县| 突泉县| 民权县| 乃东县| 苏州市| 吉安市| 宣武区| 清流县| 永丰县| 宝丰县| 周至县| 固安县| 西充县| 尚义县| 贵德县| 万盛区| 武强县| 西和县|