本論文主要針對燃料電池電動轎車FCEV(Fuel Cell Electrical Vehicle)用DC/DC變換器主電路拓撲結(jié)構(gòu)及電磁干擾產(chǎn)生與抑制問題進行研究.針對燃料電池偏軟的輸出特性和電動汽車對DC/DC變換器的體積小、重量輕和效率高的要求,本論文分析比較了帶變壓器的隔離式直流變換器和非隔離式直流變換器的主要優(yōu)點和缺點,指出隔離式變換電路不適合于FCEV用DC/DC變換器主電路,非隔離式降壓(Buck)電路是最佳的主電路方案.在此基礎(chǔ)上,分析了非隔離式降壓(Buck)電路的工作原理和特點,運用模擬仿真軟件PSPICE仿真分析了Buck主電路參數(shù),并在分析比較了各種磁性材料特性的基礎(chǔ)上對電感器進行了優(yōu)化設(shè)計.本論文深入討論了DC/DC變換器中構(gòu)成電磁干擾的三個主要因素:電磁干擾源、傳播途徑和敏感設(shè)備.分析了DC/DC變換器主電路中存在的主要干擾源及干擾產(chǎn)生的機理以及干擾傳播途徑,在此基礎(chǔ)上,重點討論了抑制各種干擾的方法及措施(包括傳導(dǎo)干擾抑制與輻射干擾抑制等),并給出了具體方案.本論文還從電磁兼容(EMC)測試的目的、組成等方面出發(fā),對整個EMC測試進行了詳細的分析,提出了基于汽車電子EMC測試標準的DC/DC變換器EMC測試大綱,并對其中的試驗項目、試驗儀器、試驗場地、試驗設(shè)置、所應(yīng)達到的等級進行了詳細的分析和介紹.
上傳時間: 2013-08-03
上傳用戶:20160811
晶體振蕩電路TTL輸出!有用啊!輸出穩(wěn)定,簡單可靠!
上傳時間: 2013-06-23
上傳用戶:acon
電壓源型PWM逆變器在當(dāng)前的工業(yè)控制中應(yīng)用越來越廣泛,在其應(yīng)用領(lǐng)域中,交流電動機的運動控制是其很重要的組成部分。在PWM逆變器的控制過程中,設(shè)置死區(qū)是為了避免逆變器的同一橋臂的兩個功率開關(guān)器件發(fā)生直通短路。盡管死區(qū)時間很短,然而當(dāng)開關(guān)頻率很高或輸出電壓很低時,死區(qū)將使逆變器輸出電壓波形發(fā)生很大畸變,進而導(dǎo)致電動機的電流發(fā)生畸變,電機附加損耗增加,轉(zhuǎn)矩脈動加大,最終導(dǎo)致系統(tǒng)的控制性能降低,甚至可能導(dǎo)致系統(tǒng)不穩(wěn)定。為此,需要對逆變器的死區(qū)進行補償。本文針對連續(xù)空間矢量調(diào)制提出了一種改進的減小零電流鉗位和寄生電容影響的死區(qū)效應(yīng)補償方法;針對斷續(xù)空間矢量調(diào)制提出了通過改變空間矢量作用時間,來改變驅(qū)動信號脈沖寬度的補償方法,并對這兩種方法進行了理論分析和仿真研究。 本文首先詳細分析了死區(qū)時間對逆變器輸出電壓和電流的影響,以及功率開關(guān)器件寄生電容對輸出電壓的影響。其次對已提出的減小零電流鉗位和寄生電容影響的死區(qū)效應(yīng)補償方法進行了理論分析,該方法先計算出補償電壓,再對由零電流鉗位現(xiàn)象引起的補償電壓極性錯誤進行校正,極性校正的參考量為d軸補償電壓的幅值,然而補償電壓的大小隨電流的變化而變化,因此該方法存在電壓極性校正時參考量為變化量的缺點,而且該方法只適用于id=0的控制方式,適用性較差。針對這些問題,本文提出了改進的減小零電流鉗位和寄生電容影響的補償方法,改進后的方法是先對由零電流鉗位現(xiàn)象引起的電流極性錯誤進行校正,然后再計算補償電壓的大小,電流極性校正時的參考量為三相電流極性函數(shù)轉(zhuǎn)化到γ-坐標系的函數(shù)sγ的幅值,sγ的幅值與補償電壓大小無關(guān)為恒定值,而且適用于任何控制方式,適應(yīng)性強。再次把改進的減小零電流鉗位和寄生電容影響的死區(qū)效應(yīng)補償方法應(yīng)用到PMSM矢量控制系統(tǒng)中,采用MATLAB和Pspice兩種方法進行了仿真研究,仿真結(jié)果驗證了補償方法的有效性。對兩種仿真結(jié)果的對比分析,表明PSpice模型能更好的模擬逆變器的非線性特性。 最后,文章分析了連續(xù)空間矢量調(diào)制和斷續(xù)空間矢量調(diào)制的輸出波形的區(qū)別和死區(qū)對兩種波形影響的不同。針對DSP芯片TMS320LF2407A硬件產(chǎn)生的斷續(xù)SVPWM波,提出了根據(jù)電壓矢量和電流矢量的相位關(guān)系,通過改變空間矢量作用時間,來改變驅(qū)動信號脈沖寬度,對其進行死區(qū)補償?shù)姆椒ā=o出了基本空間矢量作用時間調(diào)整的實現(xiàn)方法,并建立了MATLAB仿真模型,進行仿真研究,仿真結(jié)果驗證了補償方法的正確性和有效性。
上傳時間: 2013-06-04
上傳用戶:330402686
本文主要研究的是一個基于ARM7最小系統(tǒng)的研究設(shè)計,本系統(tǒng)主要由LPC2210,以及復(fù)位電路、晶振電路、程序存儲器、蜂鳴器等部分組成。本系統(tǒng)的特點是性能高、成本低并且耗能小等特點。 主要研究內(nèi)容: ? 1 以高速低功耗的ARM作為控制核心,設(shè)計ARM最小系統(tǒng)的有關(guān)軟硬件; ? 2 MCU與存儲器和串行通信的接口設(shè)計; ? 3 與計算機進行通信的軟硬件設(shè)計
標簽: ARM7 最小系統(tǒng)
上傳時間: 2013-04-24
上傳用戶:qoovoop
近年來,隨著汽車工業(yè)的迅速發(fā)展,環(huán)境污染、全球變暖、能源短缺的壓力使傳統(tǒng)的內(nèi)燃機汽車面臨前所未有的挑戰(zhàn),燃料電池電動汽車已成為汽車工業(yè)新的熱點。由于燃料電池輸出特性的特殊性,輸出端必須連接DC/DC變換器,使之與驅(qū)動器配合。因此,DC/DC變換器是燃料電池電動汽車的關(guān)鍵零部件之一。 本論文主要對燃料電池電動轎車FCEV(Fuel Cell Electric Vehicle)用DC/DC變換器的主電路拓撲結(jié)構(gòu)、參數(shù)設(shè)計及電磁兼容(EMC)問題進行了研究。重點針對升降壓和雙向DC/DC變換器進行分析研究。 首先介紹分析了幾種傳統(tǒng)升降壓直流變換器的工作原理和優(yōu)缺點。針對燃料電池的特性和電動汽車對升降壓DC/DC變換器的性能指標要求,分析比較了非隔離式直流變換器的一些優(yōu)點和缺點,提出了Buck-Boost級聯(lián)的升降壓主電路方案并提出相關(guān)的控制策略。然后運用模擬仿真軟件MATLAB仿真分析了控制策略的正確性。 其次分析研究了雙向DC/DC變換器的應(yīng)用與設(shè)計,綜合比較現(xiàn)有的各種隔離與非隔離方案,結(jié)合車用要求,選擇了非隔離式的Buck-Boost拓撲。針對其工作原理、特點進行了雙向DC/DC變換器主電路與控制電路的設(shè)計研究,重點研究其過渡過程的控制策略。在利用MATLAB進行各種過渡過程的仿真分析的基礎(chǔ)上,選取了最佳的過渡控制方案。并利用該控制策略編制DSP控制程序,制作了小功率1kW數(shù)字控制雙向DC/DC變換器。 最后深入討論了DC/DC變換器中的電磁兼容問題。分析了DC/DC變換器主電路中存在的主要干擾源、干擾產(chǎn)生的機理以及干擾傳播途徑,然后以此出發(fā),重點討論了各種抑制電磁騷擾(EMI)和電磁抗干擾(EMS)的方法及措施,給出具體方案。
上傳時間: 2013-05-24
上傳用戶:hanli8870
自制串口下載器,欺騙ICCAVR,取代STK500
上傳時間: 2013-04-24
上傳用戶:lw852826
SPI接口實險,動態(tài)LED數(shù)據(jù)管顯示實驗。 1、程序通過SPI接口輸出數(shù)據(jù)到HC595芯片驅(qū)動LED數(shù)據(jù)管簡單顯示。 2、動態(tài)調(diào)度由片內(nèi)定時器1中斷產(chǎn)生,中斷周期為5mS。 3、內(nèi)部1 M晶振,程序采用單任務(wù)方式,軟件延時。 4、進行此實驗請插上JP1的所有8個短路塊,JP6(SPI_EN)短路塊。
上傳時間: 2013-06-30
上傳用戶:gokk
新型8 通道24 位模數(shù)轉(zhuǎn)換器ADS1216 及其應(yīng)用
上傳時間: 2013-04-24
上傳用戶:lmeeworm
對供電系統(tǒng)進行適當(dāng)?shù)臒o功補償,可以穩(wěn)定電網(wǎng)電壓,提高功率因數(shù),提高設(shè)備利用率,減小網(wǎng)絡(luò)有功功率損耗,提高輸電能力,平衡三相功率,為系統(tǒng)提供電壓支撐,提高系統(tǒng)運行安全性。鋼鐵企業(yè)一直就是用電大戶,具有容量大、負荷沖擊大、起制動頻繁、快速性、工作連續(xù)性和自動化程度高等特點,存在功率因數(shù)低、電壓波動等問題。研究鋼鐵企業(yè)的無功補償,對企業(yè)提高供電可靠性,節(jié)能減排,降低損耗,提高用電設(shè)備效率,保證產(chǎn)品質(zhì)量有著非常重要的意義。 本文選用目前工程上應(yīng)用最為廣泛的動態(tài)補償裝置靜止無功功率補償器,即SVC對鋼鐵企業(yè)負荷進行無功補償。考察了軋鋼企業(yè)的負荷特點,對比了各種補償裝置的優(yōu)缺點,在此基礎(chǔ)上提出了FC—TCR型SVC做為鋼鐵企業(yè)的無功補償裝置。 本文根據(jù)特定的現(xiàn)場參數(shù),提出了FC—TCR型SVC裝置的設(shè)計框架,建立了潮流計算和SVC裝置的數(shù)學(xué)模型,給出了含有SVC補償裝置的電力系統(tǒng)潮流計算的計算方法,計算了SVC裝置的FC和TCR各支路參數(shù),對一次設(shè)備進行選型,最后提出了一套完整的SVC系統(tǒng)設(shè)計方案。仿真結(jié)果表明,采用本方案的SVC系統(tǒng)有效提高了供電系統(tǒng)的功率因數(shù),抑制了電壓波動,表明方案設(shè)計中的支路配置,參數(shù)設(shè)置和設(shè)備選型是合理的。 從基于瞬時無功功率理論的補償裝置觸發(fā)角度的算法出發(fā),研究了SVC裝置動態(tài)補償?shù)膶崿F(xiàn)方法。本文還提出了動態(tài)補償SVC監(jiān)控系統(tǒng)和晶閘管觸發(fā)系統(tǒng)的硬件實現(xiàn)。 為了驗證SVC系統(tǒng)設(shè)計的合理性,搭建了SVC的模擬試驗平臺,對一次系統(tǒng),監(jiān)控系統(tǒng),光電觸發(fā)系統(tǒng)進行了聯(lián)合調(diào)試,調(diào)試結(jié)果達到了設(shè)計預(yù)期目標。
上傳時間: 2013-06-23
上傳用戶:xiaohuanhuan
隨著電力電子技術(shù)、微處理器技術(shù)以及控制技術(shù)的發(fā)展,基于轉(zhuǎn)子磁鏈定向的交流電機矢量控制系統(tǒng)以其優(yōu)良的性能受到了廣泛應(yīng)用。采用SVPWM逆變器的異步電動機矢量控制系統(tǒng)在轉(zhuǎn)速參考值變化或者負載轉(zhuǎn)矩參考值變化的動態(tài)情況下,參考電壓矢量可能會超出基本空間矢量構(gòu)成的正六邊形,此時便出現(xiàn)動態(tài)過調(diào)制,需要用過調(diào)制策略將超出的電壓矢量重新限定在正六邊形邊界內(nèi)。不同的過調(diào)制策略會給整個系統(tǒng)帶來不同的動態(tài)性能,本文在對過調(diào)制策略進行完善的基礎(chǔ)上,針對三種過調(diào)制策略對交流電動機動態(tài)性能的影響進行了研究,并對其機理進行了理論分析與探討。 @@ 本文首先以三相異步電動機在兩相靜止坐標系下的動態(tài)方程為基礎(chǔ),按照轉(zhuǎn)子磁鏈定向,設(shè)計了轉(zhuǎn)子磁鏈觀測器,完成了勵磁電流分量和轉(zhuǎn)矩電流分量的解耦,并構(gòu)建了基于SVPWM的異步電動機矢量控制系統(tǒng)的MATLAB仿真模型。在矢量控制中,電流控制對系統(tǒng)性能具有重要影響。為了改善系統(tǒng)性能,所設(shè)計的矢量控制系統(tǒng)采用了同步電流控制,并對反電勢進行了前饋補償。 @@ 在分析了現(xiàn)有的三種過調(diào)制策略之后,對過調(diào)制策略進行了完善,并構(gòu)建了異步電動機矢量控制系統(tǒng)的過調(diào)制仿真模型。過調(diào)制中,當(dāng)原參考電壓矢量位于正六邊形中任意兩個扇區(qū)交界附近時,過調(diào)制策略2和3所得到的新電壓矢量仍會超出正六邊形邊界,過調(diào)制算法不再適用于此區(qū)域。針對以上不足,本文對過調(diào)制策略2和3進行了完善,使過調(diào)制算法適用于所有區(qū)域。采用完善后的過調(diào)制策略對轉(zhuǎn)速參考值變化和負載轉(zhuǎn)矩參考值變化的異步電動機矢量控制系統(tǒng)進行仿真,發(fā)現(xiàn)在加速與加載的條件下,過調(diào)制策略2的動態(tài)性能好于過調(diào)制策略1,而過調(diào)制策略3的動態(tài)性能最佳,具有最小的動態(tài)響應(yīng)時間,暫態(tài)性能優(yōu)良;在減載的條件下,過調(diào)制策略1和2能夠很快的進入穩(wěn)定狀態(tài),但是過調(diào)制策略3卻出現(xiàn)問題,動態(tài)響應(yīng)時間很長,說明此策略具有一定的局限性。 @@ 本文深入探討了三種過調(diào)制策略導(dǎo)致不同動態(tài)性能的內(nèi)在機理,通過對三種過調(diào)制策略中電壓矢量的幅值和相位進行分析,理論上解釋了出現(xiàn)不同動態(tài)響應(yīng)時間的原因。出現(xiàn)過調(diào)制時,過調(diào)制策略2中新電壓矢量的幅值總是大于過調(diào)制策略1中新電壓矢量的幅值,所以動態(tài)性能更好。在加速和加 載條件下,過調(diào)制策略3中新電壓矢量的相位總是超前于過調(diào)制策略1和2中新電壓矢量的相位,因此可以獲得更快的動態(tài)響應(yīng),暫態(tài)性能更佳。但是在減載條件下,過調(diào)制策略3中新電壓矢量與原電壓矢量間的相位關(guān)系處于無規(guī)律的超前滯后狀態(tài),導(dǎo)致過調(diào)制策略3出現(xiàn)問題,動態(tài)響應(yīng)時間很長,說明此過調(diào)制策略有其不足之處,有待于改進。@@關(guān)鍵詞:SVPWM;矢量控制;過調(diào)制;動態(tài)性能
上傳時間: 2013-06-27
上傳用戶:nunnzhy
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1