本文對高性能、大容量可調AC-DC直流開關電源進行了研究。文章詳細分析了高性能、大容量可調AC-DC直流開關電源的工作原理,并提出了主電路和控制電路的詳細設計方案。在此基礎上,完成了整個系統的硬件電路設計和軟件程序的編制,并對電源裝置的硬件和軟件進行了調試和修改。在分析原理的基礎上,本文從三相橋式不控整流、全橋變換器、高頻變壓器、濾波電路等環節對該系統的主電路進行了闡述,同時探討了該電源系統實現大容量的解決方案,即采用多個電源模塊并聯運行。本文還探討了多個電源模塊并聯運行時的自動均流技術,并詳細介紹了基于平均值的自動均流電路。在電壓調節環節上,詳細分析了基于SG1525控制芯片的PWM控制電路。本文研制的直流開關電源具有輸出電壓可調、輸出電流大、紋波小等特點,而且還具有換檔、遠程控制等功能。它主要用于各種直流電機性能測試,實驗結果表明它基本達到設計要求,從而驗證了理論分析的正確性,具有廣闊的應用前景。
上傳時間: 2013-07-31
上傳用戶:851197153
隨著市場經濟和現代化工業的發展,能源短缺和環境污染,已經成為制約人類社會健康發展的兩大重要因素。新能源的開發與利用愈來愈受到重視,太陽能以其清潔環保、蘊藏豐富等優點逐步得到了開發利用。光伏逆變電源作為太陽能利用中主要的能量變換裝置,是目前研究和發展的重要環節。 本課題研究的是可并網三相光伏逆變電源,以追求體積小、效率高、精度大、方便實用為目的,采用了DC—HFAC—DC—LFAC三級功率傳輸架構,設計中使用了SPWM技術、SVPWM技術、內高頻環技術、DSP數字控制技術和數字鎖相環技術等前沿實用技術。 直流DC—DC變換器采用內高頻環技術,既實現了電氣隔離又大大的減小了裝置體積。這一部分本文不做涉及,本文所涉及的內容為本系統的DC—AC逆變電源部分,本論文的主要內容如下: 首先,分析了幾種DC—AC逆變器的主電路拓撲結構,根據其優缺點與實際應用需要,選擇三相四橋臂結構作為本文主電路結構,滿足了電網負載的不平衡性。在選擇了三相四橋臂結構的基礎上,選取兩種最新的SVM控制方法:基于三態滯環的瞬時空間電流相量控制法與二維空間矢量控制法,對兩種方法作出詳細分析比較,根據實用性原則,選取二維空間矢量控制法作為本文的控制方法。 其次,選取了主控芯片TI公司的TMS320F2812,電路中的功能盡量數字化實現,既控制了電路體積,又大大提高了系統的安全性與可靠性。設計了本系統的控制電路、驅動電路、緩沖電路、保護電路、濾波器電路等系統電路,本系統所有硬件電路均設計完畢。為了驗證設計的正確性,大部分電路都用ORCAD—Pspice仿真軟件進行仿真驗證,小部分電路搭建實際電路,設計電路都能達到系統設計要求。 隨后,簡單介紹了DSP編程環境CCS。詳細分析了SVPWM的工作原理,并給出二維空間矢量法在DSP中的實現方法。介紹幾種MPPT方法,并選取本課題所選用的方法。 最后,給出系統仿真,分析了重點模塊,得到了仿真結果。 關鍵詞:光伏并網電源、空間矢量脈寬調制、內高頻環、三相四橋臂
上傳時間: 2013-05-19
上傳用戶:520
風光互補發電系統作為新能源技術應用的重要組成部分越來越受到人們的青睞,所以將此作為新能源研究的切入點,進行一些有益的嘗試和探索。 本文從太陽能電池的光生伏打效應入手,推導出太陽能電池的U-I曲線,并以此作為最大功率跟蹤(MPPT)技術的理論基礎。針對小風機的發電技術也存在的MPPT技術,文章進行了統一性研究,給出了新的控制策略--變步長擾動觀察控制。為了提高系統的充放電效率,文章還對三段式充放電、均衡充電、溫度補償等蓄電池充電理論進行了闡述。 根據上述理論,結合工程實際,設計了風光互補控制器的電路。利用電壓霍爾和電流霍爾實現了風機電壓、太陽能電池電壓、蓄電池電壓和充電電流的實時采樣,利用TMS320F2812DSP的EVA與AD模塊軟件實現對蓄電池欠壓、過壓、運行等模式的智能充放電管理。針對風力發電機的輸出電壓波動大的問題,系統提供了硬件和軟件的風機過速智能保護系統。本系統采用MPPT的控制策略提高了整個系統的效率,設計提供了一套LCD顯示界面和一組LED指示燈增強系統管理的友好性。為了解決風光互補控制器芯片的供電問題,設計了一套以UC3843PWM芯片為核心的反激式輔助電源。該電源用硬件實現了電流內環、電壓外環的雙環控制策略,提高了系統供電的可靠性和穩定性。 研制出了一臺風光互補控制器樣機,進行了有關實驗、檢測與調試。實驗波形和數據都顯示該系統運行穩定可靠,達到了設計要求。該方案可為風光互補控制器的工程設計提供一定的參考。
上傳時間: 2013-04-24
上傳用戶:diets
函數發生器又名任意波形發生器,是一種常用的信號源,廣泛應用于通信、雷達、導航等現代電子技術領域。信號發生器的核心技術是頻率合成技術,主要方法有:直接模擬頻率合成、鎖相環頻率合成(PLL)、直接數字合成技術(DDS)。DDS是開環系統,無反饋環節,輸出響應速度快,頻率穩定度高。因此直接數字頻率合成技術是目前頻率合成的主要技術之一,其輸出信號具有相對較大的帶寬、快速的相位捷變、極高的相位分辨率和相位連續等優點。本文的主要工作是采用SOPC結合虛擬儀器技術,進行DDS智能函數發生器的研制。 本文介紹了虛擬儀器技術的基本理論,簡要闡述了儀器驅動程序、VISA等相關技術。對SOPC技術進行了深入的研究:SOPC技術是基于可編程邏輯器件的可重構片上系統,它作為SOC和CPLD/FPGA相結合的一項綜合技術,結合了兩者的優點,集成了硬核或軟核CPU、DSP、鎖相環、存儲器、I/O接口及可編程邏輯,可以靈活高效地解決SOC方案,而且設計周期短,設計成本低,非常適合本設計的應用。本文還對基于DDS原理的設計方案進行了分析,介紹了DDS的基本理論以及數學綜合,在研究DDS原理的基礎上,利用SOPC技術,在一片FPGA芯片上實現了整個函數發生器的硬件集成。 本文就函數發生器的設計制定了整體方案,對軟硬件設計原理及實現方法進行了具體的介紹,包括整個系統的硬件電路,SOPC片上系統和PC端軟件的設計。在設計中,LabVIEW波形編輯軟件和函數發生器二者采用異步串口進行通信。利用LabVIEW的強大功能,把波形的編輯,系統的設置放到計算機上完 成,具有人機界面友好、系統升級方便、節約硬件成本等諸多優勢。同時充分利用了FPGA內部大量的邏輯資源,將DDS模塊和微處理器模塊集成到一個單片FPGA上,改變了傳統的系統設計思路。通過對系統仿真和實際測試,結果表明該智能型函數發生器不僅能產生理想的輸出信號,還具有集成度高、穩定性好和擴展性強等優點。關鍵詞:智能型函數發生器,虛擬儀器,可編程片上系統,直接數字合成技術,NiosⅡ處理器。
上傳時間: 2013-07-09
上傳用戶:zw380105939
隨著技術的發展,基于PLC的控制系統呈現綜合化、網絡化的發展趨勢。為了適應當今PLC課程教學的需要,我們應提供具有現場控制對象的控制層、監控管理層、遠程監控層三層結構的實驗控制系統,并將組態軟件技術、先進的數據交互技術、單片機技術、通信技術集成在控制系統中,構建現代大綜合設計性實驗系統,以培養全面的高素質的綜合性人才。 本文提出了一種多功能、大綜合的實驗平臺的方案和技術實現。本課題由市場占有率高的西門子PLC及其通信網絡模塊組成,采用具有很高的性價比的系統集成技術,構成了覆蓋面較大的全集成的網絡控制系統,可提供PPI網絡、PROFIBUS-DP網絡和以太網等多種網絡形式的實驗平臺;采用多種工業組態軟件如Wincc、組態王和MCGS,構成了豐富的上位監控模式;通過OPC技術實現對PROFIBuS-DP網絡的遠程監控。在此基礎上,結合單片機技術、CPLD技術,設計了可自定義I/O口的多路模擬采集卡,擴展了PLC的信息控制功能;采用網絡技術,將PLC技術與變頻器、步進電機控制相結合,對標準的PLC對象TM2和機械手設備進行二次開發,構成相關的運動控制系統,模擬生產線的控制,展示PLC的運動控制功能;將PLC技術與無線控制技術相結合,實現PLC的無線遙控功能;完成了三菱Q系列PLC與PROFIBUS-DP網絡的聯網,實現了不同品牌的PLC網絡的互聯互通。在此基礎上,還開發了多個實驗程序,展示其豐富的網絡構架和綜合的實驗模式。 系統調試和實驗效果表明,該系統接近當今工業技術實踐,可為學生的課程設計、畢業設計以及PLC技術研究提供先進的集多種技術于一體的大綜合設 計性實驗平臺。關鍵詞:PLC;業網絡;OPC
上傳時間: 2013-05-22
上傳用戶:歸海惜雪
可編程邏輯器件使用參考資料。 解答可編程器件使用中的常見問題。 供參考。
上傳時間: 2013-05-19
上傳用戶:thh29
本文介紹了基于軟PLC(Programmable Logic Controller,可編程控制器)的嵌入式技術起源和背景,綜述了基于軟PLC的嵌入式系統的關鍵技術和優點,最后介紹了其設計和實現的方法。 基于軟PLC的嵌入式系統的研究與實現分為開發系統和運行系統(又稱為虛擬機系統)。本文概述了開發系統,其運行于PC機的操作系統如Windows或者Linux等,為用戶提供一個大眾化的編程環境,它包含編輯器、編譯器、連接器、調試器和通信接口幾個部分。編輯界面友好,可以讓用戶方便的使用LD、ST和FBD三種語言編寫程序,編譯器和連接器將源程序文件編譯和連接成虛擬機系統可執行的目標代碼文件;分析了開發系統,其中詳細描述了編譯模塊的編制過程,實現了將指令表語言轉換為運行系統能夠識別的C/C++指令的功能;詳細地研究了梯形圖轉換為指令表語言,以及由指令表語言向梯形圖語言的算法和數據結構。調試器借助于虛擬機運行系統提供的服務可完成對應用程序的調試糾錯;討論了uCLinux操作系統和編譯調試技術,以及采用ModBus/TCP工業通信協議的通信接口用于開發系統和運行系統之間的通信。 另一方面,本文分析了虛擬機運行系統,它運行于安裝了uCLinux的ARM7平臺上,包括運行內核模塊、系統管理模塊和通信接口模塊。由于uCLinux沒有MMU和本身對實時性沒有什么要求,而針對基于軟PLC的嵌入式系統的研究與實現要求,本文在對其進行了uCLinux小型化研究的同時探討了雙內核實時性方案,解決了uCLinux實時性不足的問題。運行內核模塊調度和執行應用程序并管理時鐘。系統管理模塊管理系統狀態和內存。通信模塊用于開發系統及I/O設備通信。在此基礎上,對基于軟PLC的嵌入式系統的進行了設計與實現,并通過試驗將編譯的目標代碼傳遞到基于軟PLC的嵌入式運行系統中,實現了控制功能,驗證了生成目標代碼的正確性和開發系統的可行性,實現了編輯界面友好,系統開放,性價比較高的軟PLC嵌入式系統,達到了預期的目標,具有一定理論和應用價值。
上傳時間: 2013-04-24
上傳用戶:jiiszha
互聯網、移動通信、星基導航是21世紀信息社會的三大支柱產業,而GPS系統的技術水平和發展歷程代表著全世界衛星導航系統的發展狀況。目前,我國已經成為GPS的使用大國,衛星導航產業鏈也已基本形成。然而,我們對GPS核心技術(即如何捕獲衛星信號并保持對信號的跟蹤)的研究還不夠深入,我國GPS產品的核心部分多數還是靠進口。因此,對GPS核心技術的研究是非常緊迫的。 本文首先介紹了GPS的定位原理,之后闡述了GPS接收機的基本原理一直接擴頻通信和GPS信號的結構與特性。從這些方面出發研究接收機基帶處理器的捕獲與跟蹤設計方案。 設計過程中,先詳細分析了滑動相關的捕獲算法和基于FFT的快速捕獲算法,并利用matlab進行了驗證。由于前者靈活性好且可捕獲到高精度的碼相位和載波頻率,適合于本文的硬件接收機,所以本文確定了滑動相關的捕獲方案。 接著分析了跟蹤環路的特點,跟蹤模塊采用碼跟蹤環和載波跟蹤環耦合的方法實現。由于GPS系統通常工作在非常低的信噪比環境中,而非相干環在低信噪比下環路跟蹤性能較好,所以碼跟蹤環采用非相干(DDLL)環實現。這種跟蹤環路采用的鑒相器是能量鑒相器,對數據的調制和載波相位都不敏感,鑒相器不會產生不確定量。由于輸入信號存在180°相位翻轉,而COSTAS鎖相環允許數據調制,對I支路和Q支路信號的180°相位翻轉不敏感,所以載波跟蹤環采用COSTAS鎖相環實現。上述算法在matlab環境下得到了驗證。 基帶處理器電路的主要模塊在Quartus II8.0開發平臺上利用VHDL硬件描述語言實現。然后利用EDA仿真工具ModelSim-Altera6.1g進行了邏輯仿真。本設計滿足系統功能和性能的要求,可以直接用于實時GPS接收機系統的設計中,為自主設計GPS接收機奠定了基礎。 最后,由于在弱電磁環境下,捕獲失鎖后32PPS信號會丟失。所以設計了一個能授時和守時的算法去得到與GPS時同步的精確授時秒信號。并且實現了這個算法。
上傳時間: 2013-04-24
上傳用戶:zuozuo1215
現代電子系統中,FIR數字濾波器作為數字信號處理技術的重要組成部分,以其良好的線性特性在許多領域內被廣泛的應用。在工程實踐中,往往要求信號處理具有實時性和靈活性,而已有的一些軟件和硬件實現方式則難以同時達到這兩方面的要求。 隨著可編程邏輯器件和EDA技術的發展,越來越多的人開始應用FPGA實現FIR濾波器,既保證了信號處理的實時性,又可兼顧靈活性的要求。但是普遍存在的問題是不能根據被濾波信號特點動態調整濾波器的濾波系數,只能完成單一特性的濾波工作。 本文將FPGA的快速性和計算機的靈活性通過USB2.0總線有機地結合起來,設計了一個基于FPGA的可調參數FIR濾波系統。此系統由計算機根據各種濾波器指標計算出濾波參數,通過USB2.0對FPGA芯片內部的FIR多階濾波器進行參數配置,實現數字濾波器參數可調;配置后的FPGA濾波單元完成對A/D采集的信號進行濾波運算,濾波后的數據經過緩存后通過USB2.0總線傳輸至計算機進行顯示、分析和儲存等進一步處理。在系統中采用有限狀態機對FPGA參數配置模式和濾波模式進行切換,保證了系統的有序運行。 本文通過性能測試和應用實例對系統進行驗證。實驗證明:該基于FPGA的可調參數FIR濾波系統參數配置方便,可以根據實際需要動態調整濾波參數,并且濾波效果良好,可有效濾除噪聲信號。
上傳時間: 2013-07-26
上傳用戶:KSLYZ
隨著圖像處理技術和投影技術的不斷發展,人們對高沉浸感的虛擬現實場景提出了更高的要求,這種虛擬顯示的場景往往由多通道的投影儀器同時在屏幕上投影出多幅高清晰的圖像,再把這些單獨的圖像拼接在一起組成一幅大場景的圖像。而為了給人以逼真的效果,投影的屏幕往往被設計為柱面屏幕,甚至是球面屏幕。當圖像投影在柱面屏幕的時候就會發生幾何形狀的變化,而避免這種幾何變形的就是圖像拼接過程中的幾何校正和邊緣融合技術。 一個大場景可視化系統由投影機、投影屏幕、圖像融合機等主要模塊組成。在虛擬現實應用系統中,要實現高臨感的多屏幕無縫拼接以及曲面組合顯示,顯示系統還需要運用幾何數字變形及邊緣融合等圖像處理技術,實現諸如在平面、柱面、球面等投影顯示面上顯示圖像。而關鍵設備在于圖像融合機,它實時采集圖形服務器,或者PC的圖像信號,通過圖像處理模塊對圖像信息進行幾何校正和邊緣融合,在處理完成后再送到顯示設備。 本課題提出了一種基于FPGA技術的圖像處理系統。該系統實現圖像數據的AiD采集、圖像數據在SRAM以及SDRAM中的存取、圖像在FPGA內部的DSP運算以及圖像數據的D/A輸出。系統設計的核心部分在于系統的控制以及數字信號的處理。本課題采用XilinxVirtex4系列FPGA作為主處理芯片,并利用VerilogHDL硬件描述語言在FPGA內部設計了A/D模塊、D/A模塊、SRAM、SDRAM以及ARM處理器的控制器邏輯。 本課題在FPGA圖像處理系統中設計了一個ARM處理器模塊,用于上電時對系統在圖像變化處理時所需參數進行傳遞,并能實時從上位機更新參數。該設計在提高了系統性能的同時也便于系統擴展。 本文首先介紹了圖像處理過程中的幾何變化和圖像融合的算法,接著提出了系統的設計方案及模塊劃分,然后圍繞FPGA的設計介紹了SDRAM控制器的設計方法,最后介紹了ARM處理器的接口及外圍電路的設計。
上傳時間: 2013-04-24
上傳用戶:ynsnjs