基于嵌入式技術的遠程監控系統可以達到動態、無死角的監控目的,可以對一些特殊環境進行遠程監視和控制,且不受濕度、溫度等條件的影響,廣泛應用于軍事、交通、智能家居、醫療監護等多個領域。可以解決傳統監控系統將圖像采集設備固定在一個地方而使監控范圍有限,適用場合少等弊端。 本文設計了一款基于ARM和FPGA的遠程監控系統。首先在對遠程監控系統功能分析的基礎上,設計了以ARM為主控制器和FPGA為輔助控制器的硬件電路,采用ARM芯片控制圖像采集、速度采集、網絡傳輸等干擾小的模塊,采用FPGA芯片控制電機驅動、舵機驅動、電池監控等干擾大的模塊,大大提高了系統的穩定性;其次設計了基于WinCE操作系統的圖像采集、GPIO、PWM、外中斷EINT-19的流接口驅動程序;同時設計了基于WinCE操作系統的圖像采集及壓縮、網絡通信、車模速度采集的應用程序;FPGA內部邏輯電路采用Verilog語言完成電源監控、舵機控制、直流電機控制等功能。 本系統集圖像采集和壓縮、運動控制、網絡傳輸于一體。其圖像采集速度達30幀/秒,圖像分辨率達640x480,JPEG壓縮比達10:1,控制命令響應時間為1s,網絡傳輸速率達10Mbps。其功能擴展容易,功耗低,體積小,抗干擾能力強,具有很好的市場前景。關鍵詞:winCE;S3C2440A;FPGA;遠程監控;流接口驅動
上傳時間: 2013-04-24
上傳用戶:121212121212
目前在各行各業中應用種類繁多的測量儀器隨著儀器性能指標要求的逐漸提升以及功能的不斷拓展,對儀器控制系統的實時性和集成化程度等性能的要求也越來越高。目前發展的趨勢是開放式、集成度向芯片級靠攏的高實時性儀器。針對目前傳統的系統設計存在著功能簡單、速度慢、實時性差、對數據的再加工處理能力極為有限等問題,本文根據課題需要提出了一種基于ARM+FPGA架構的高速實時數據采集嵌入式系統方案,應用在小功率半導體測量儀器上。方案采用三星S3C2410的ARM處理器進行管理控制,處理數據,界面顯示;Altera公司的Cyclone系列的1C12 FPGA器件用來進行高速數據采集,提高了系統的實時性和集成化程度。 本文首先給出了ARM+FPGA架構的總體設計。硬件方面,簡要討論了ARM處理器的特點和優勢,FPGA在高速采集和并行性上的優勢,給出了硬件的總體結構和主要部件及相關接口。軟件方面,研究了基于嵌入式Linux的嵌入式系統的構建和BootLoader的啟動以及內核和根文件系統的結構,構建了嵌入式Linux系統包括建立交叉開發環境,修改移植BootLoader和裁減移植Linux內核,并且根據課題實際需要精簡建立了根文件系統。 為了滿足測量儀器的實時性,設計了ARM與FPGA的高速數據采集接口。進行了FPGA內部與ARM接口相關部分的硬件電路設計;通過分析ARM與FPGA內部時序的差異,針對ARM與FPGA內部FIFO時序不匹配的問題,解決了測量儀器中高速數據采集與處理速度不匹配的問題。接著,通過研究Linux設備驅動基本原理和驅動程序的開發過程,設計了Linux下的FPGA數據采集接口驅動程序,并且實現了中斷傳輸。使得FPGA芯片通過高效可靠的驅動程序可以很好的與ARM進行通訊。 最后為了方便用戶操作,進行了人機交互系統的設計。為了降低成本和提高實用性利用FPGA芯片剩余的資源實現了對PS/2鍵盤鼠標接口的控制,應用到系統中,大大提高了人機交互能力;通過比較分析目前比較流行的幾種嵌入式GUI圖形設計工具的優缺點,結合課題的實際情況選擇了MiniGUI作為課題圖形界面的開發。根據具體要求設計了適合測量儀器方面上使用的人機交互界面,并且移植到了ARM平臺上,給測量儀器的使用提供了更好的交互操作。 本課題完成了嵌入式Linux開發環境的建立,針對課題實際硬件電路設計修改移植了bootloader,裁減移植了內核以及根文件系統的建立;設計了FPGA內部硬件電路,解決了接口中ARM與FPGA時序不匹配的問題,實現了ARM與FPGA之間的高速數據采集;設計了高速采集接口在嵌入式Linux下的驅動程序以及中斷傳輸和應用程序;合理設計了適合測量儀器使用的人機交互界面,并巧妙設計了PS/2鍵盤鼠標接口,進一步提高了交互操作。
上傳時間: 2013-06-21
上傳用戶:01010101
隨著計算機軟硬水平的不斷提高,嵌入式領域的發展也取得了長足的進步。目前,嵌入式與Linux技術的結合正在推動著嵌入式技術的飛速發展,嵌入式系統的研究和應用產生了顯著的變化。 硬件上,嵌入式平臺由51系列內核的8位機系統逐步上升到以ARM內核為主流的32位系統;軟件上Linux作為操作系統的發展史上一個重要的里程碑,以高安全性和穩定性、開源免費等的優勢使得其在政府、國防、教育、工業等領域獲得了廣泛的運用。 2n偽隨機多頻道激電理論(簡稱偽隨機理論),是由何繼善院士率先提出并命名的,其實質是將含有3,5,7…等多個奇數主頻率的復合波同時向大地發送,接收機同時接收經大地介質傳導的復合波中各主頻率電流響應。在地球物理勘探領域,基于偽隨機理論的數據采集系統具有抗干擾能力強、測量精度高、觀測速度快、裝置輕便等優點而得到廣泛應用。 本文在分析偽隨機理論基礎上,結合當前嵌入式軟硬件發展的最新成果,開展對ARM Linux嵌入式數據信息系統的研究與實現。 首先,通過需求分析,對各種采集方案比較后,設計系統總體方案。通過數據信息系統驅動總體分析,選用嵌入式板載的音頻芯片實現數據A/D轉換,完成Linux下采集設備驅動程序設計。 其次,在ARM9內核的S3C2410嵌入式處理器硬件平臺,按照嵌入式軟件開發流程,搭建嵌入式Linux交叉開發平臺;裁剪并移植Linux內核,構建嵌入式文件系統。 再次,利用當前流行的嵌入式圖形開發庫Qtopia Core,結合Sqlite數據庫與Linux多線程技術,設計數據采集應用程序,建立數據信息系統的應用軟件模型,此基礎上對整個系統進行測試,與理論值進行對比實驗。 最后,就課題的不足做出總結,并且提出系統后期的改進建議。
上傳時間: 2013-07-11
上傳用戶:CETM008
主版上有很多PCI的介面可以利用,他的LAYOUT有一些注意事項及必須處理走線的特性阻抗才可以讓系統穩定。
上傳時間: 2013-06-14
上傳用戶:夢雨軒膂
基于嵌入式技術的遠程監控系統可以達到動態、無死角的監控目的,可以對一些特殊環境進行遠程監視和控制,且不受濕度、溫度等條件的影響,廣泛應用于軍事、交通、智能家居、醫療監護等多個領域。可以解決傳統監控系統將圖像采集設備固定在一個地方而使監控范圍有限,適用場合少等弊端。 本文設計了一款基于ARM和FPGA的遠程監控系統。首先在對遠程監控系統功能分析的基礎上,設計了以ARM為主控制器和FPGA為輔助控制器的硬件電路,采用ARM芯片控制圖像采集、速度采集、網絡傳輸等干擾小的模塊,采用FPGA芯片控制電機驅動、舵機驅動、電池監控等干擾大的模塊,大大提高了系統的穩定性;其次設計了基于WinCE操作系統的圖像采集、GPIO、PWM、外中斷EINT-19的流接口驅動程序;同時設計了基于WinCE操作系統的圖像采集及壓縮、網絡通信、車模速度采集的應用程序;FPGA內部邏輯電路采用Verilog語言完成電源監控、舵機控制、直流電機控制等功能。 本系統集圖像采集和壓縮、運動控制、網絡傳輸于一體。其圖像采集速度達30幀/秒,圖像分辨率達640x480,JPEG壓縮比達10:1,控制命令響應時間為1s,網絡傳輸速率達10Mbps。其功能擴展容易,功耗低,體積小,抗干擾能力強,具有很好的市場前景。
上傳時間: 2013-06-18
上傳用戶:heart520beat
對於輸出電壓處於輸入電壓範圍之內 (這在鋰離子電池供電型應用中是一種很常見的情形) 的 DC/DC 轉換器設計,可供采用的傳統解決方案雖有不少,但迄今為止都不能令人非常滿意
上傳時間: 2013-11-19
上傳用戶:urgdil
第一章 序論……………………………………………………………6 1- 1 研究動機…………………………………………………………..7 1- 2 專題目標…………………………………………………………..8 1- 3 工作流程…………………………………………………………..9 1- 4 開發環境與設備…………………………………………………10 第二章 德州儀器OMAP 開發套件…………………………………10 2- 1 OMAP介紹………………………………………………………10 2-1.1 OMAP是什麼?…….………………………………….…10 2-1.2 DSP的優點……………………………………………....11 2- 2 OMAP Architecture介紹………………………………………...12 2-2-1 OMAP1510 硬體架構………………………………….…12 2-2.2 OMAP1510軟體架構……………………………………...12 2-2.3 DSP / BIOS Bridge簡述…………………………………...13 2- 3 TI Innovator套件 -- OMAP1510 ……………………………..14 2-2.1 General Purpose processor -- ARM925T………………...14 2-2.2 DSP processor -- TMS320C55x …………………………15 2-2.3 IDE Tool – CCS …………………………………………15 2-2.4 Peripheral ………………………………………………..16 第三章 在OMAP1510上建構Embedded Linux System…………….17 3- 1 嵌入式工具………………………………………………………17 3-1.1 嵌入式程式開發與一般程式開發之不同………….….17 3-1.2 Cross Compiling的GNU工具程式……………………18 3-1.3 建立ARM-Linux Cross-Compiling 工具程式………...19 3-1.4 Serial Communication Program………………………...20 3- 2 Porting kernel………………………………………………….…21 3-2.1 Setup CCS ………………………………………….…..21 3-2.2 編譯及上傳Loader…………………………………..…23 3-2.3 編譯及上傳Kernel…………………………………..…24 3- 3 建構Root File System………………………………………..…..26 3-3.1 Flash ROM……………………………………………...26 3-3.2 NFS mounting…………………………………………..27 3-3.3 支援NFS Mounting 的kernel…………………………..27 3-3.4 提供NFS Mounting Service……………………………29 3-3.5 DHCP Server……………………………………………31 3-3.6 Linux root 檔案系統……………………………….…..32 3- 4 啟動及測試Innovator音效裝置…………………………..…….33 3- 5 建構支援DSP processor的環境…………………………...……34 3-5.1 Solution -- DSP Gateway簡介……………………..…34 3-5.2 DSP Gateway運作架構…………………………..…..35 3- 6 架設DSP Gateway………………………………………….…36 3-6.1 重編kernel……………………………………………...36 3-6.2 DEVFS driver…………………………………….……..36 3-6.3 編譯DSP tool和API……………………………..…….37 3-6.4 測試……………………………………………….…….37 第四章 MP3 Player……………………………………………….…..38 4- 1 MP3 介紹………………………………………………….…….38 4- 2 MP3 壓縮原理……………………………………………….….39 4- 3 Linux MP3 player – splay………………………………….…….41 4.3-1 splay介紹…………………………………………….…..41 4.3-2 splay 編譯………………………………………….…….41 4.3-3 splay 的使用說明………………………………….……41 第五章 程式改寫………………………………………………...…...42 5-1 程式評估與改寫………………………………………………...…42 5-1.1 Inter-Processor Communication Scheme…………….....42 5-1.2 ARM part programming……………………………..…42 5-1.3 DSP part programming………………………………....42 5-2 程式碼………………………………………………………..……43 5-3 雙處理器程式開發注意事項…………………………………...…47 第六章 效能評估與討論……………………………………………48 6-1 速度……………………………………………………………...48 6-2 CPU負載………………………………………………………..49 6-3 討論……………………………………………………………...49 6-3.1分工處理的經濟效益………………………………...49 6-3.2音質v.s 浮點與定點運算………………………..…..49 6-3.3 DSP Gateway架構的限制………………………….…50 6-3.4減少IO溝通……………….………………………….50 6-3.5網路掛載File System的Delay…………………..……51 第七章 結論心得…
上傳時間: 2013-10-14
上傳用戶:a471778
c#編寫的溫度
上傳時間: 2013-10-17
上傳用戶:1184599859
附件是一款PCB阻抗匹配計算工具,點擊CITS25.exe直接打開使用,無需安裝。附件還帶有PCB連板的一些計算方法,連板的排法和PCB聯板的設計驗驗。 PCB設計的經驗建議: 1.一般連板長寬比率為1:1~2.5:1,同時注意For FuJi Machine:a.最大進板尺寸為:450*350mm, 2.針對有金手指的部分,板邊處需作掏空處理,建議不作為連板的部位. 3.連板方向以同一方向為優先,考量對稱防呆,特殊情況另作處理. 4.連板掏空長度超過板長度的1/2時,需加補強邊. 5.陰陽板的設計需作特殊考量. 6.工藝邊需根據實際需要作設計調整,軌道邊一般不少於6mm,實際中需考量板邊零件的排布,軌道設備正常卡壓距離為不少於3mm,及符合實際要求下的連板經濟性. 7.FIDUCIAL MARK或稱光學定位點,一般設計在對角處,為2個或4個,同時MARK點面需平整,無氧化,脫落現象;定位孔設計在板邊,為對稱設計,一般為4個,直徑為3mm,公差為±0.01inch. 8.V-cut深度需根據連板大小及基板板厚考量,角度建議為不少於45°. 9.連板設計的同時,需基於基板的分板方式考量<人工(治具)還是使用分板設備>. 10.使用針孔(郵票孔)聯接:需請考慮斷裂后的毛刺,及是否影響COB工序的Bonding機上的夾具穩定工作,還應考慮是否有無影響插件過軌道,及是否影響裝配組裝.
上傳時間: 2014-12-31
上傳用戶:sunshine1402
附件是一款PCB阻抗匹配計算工具,點擊CITS25.exe直接打開使用,無需安裝。附件還帶有PCB連板的一些計算方法,連板的排法和PCB聯板的設計驗驗。 PCB設計的經驗建議: 1.一般連板長寬比率為1:1~2.5:1,同時注意For FuJi Machine:a.最大進板尺寸為:450*350mm, 2.針對有金手指的部分,板邊處需作掏空處理,建議不作為連板的部位. 3.連板方向以同一方向為優先,考量對稱防呆,特殊情況另作處理. 4.連板掏空長度超過板長度的1/2時,需加補強邊. 5.陰陽板的設計需作特殊考量. 6.工藝邊需根據實際需要作設計調整,軌道邊一般不少於6mm,實際中需考量板邊零件的排布,軌道設備正常卡壓距離為不少於3mm,及符合實際要求下的連板經濟性. 7.FIDUCIAL MARK或稱光學定位點,一般設計在對角處,為2個或4個,同時MARK點面需平整,無氧化,脫落現象;定位孔設計在板邊,為對稱設計,一般為4個,直徑為3mm,公差為±0.01inch. 8.V-cut深度需根據連板大小及基板板厚考量,角度建議為不少於45°. 9.連板設計的同時,需基於基板的分板方式考量<人工(治具)還是使用分板設備>. 10.使用針孔(郵票孔)聯接:需請考慮斷裂后的毛刺,及是否影響COB工序的Bonding機上的夾具穩定工作,還應考慮是否有無影響插件過軌道,及是否影響裝配組裝.
上傳時間: 2013-10-15
上傳用戶:3294322651