基于彩色路徑識別的視覺導航方法是當前自動導航小車領域的研究熱點和方向。視覺導航是指根據地面路徑和被控對象之間的位置偏差控制其運行的方向,因此,地面彩色路徑圖像的攝取及其識別處理就成為視覺導航系統中的基礎和關鍵。在當前的視覺導航系統設計中,圖像處理的硬件平臺都是基于通用微處理器,嵌入式微處理器或者DSP進行設計的。這些處理器一個共同的特點就是數據串行處理,而圖像處理過程涉及大量的并行處理操作,因此傳統的串行處理方式滿足不了圖像處理的實時性要求。 鑒于微處理器這方面的不足,作者提出一種使用FPGA實現圖像識別的并行處理方案,并據此設計一個智能圖像傳感器。該傳感器采用先進的FPGA技術,將圖像采集及其顯示,路徑的識別處理以及通信控制等模塊集成在一個芯片上,形成一個片上系統(SOC)。其主要功能是對所采集的彩色路徑圖像進行識別處理,獲得彩色路徑的坐標及其方向角,并將處理結果發送給上位機,為自動導航提供控制依據。 本文將彩色路徑的識別處理過程劃分為三個階段,第一階段為顏色聚類識別,以獲得二值路徑圖像,第二階段為數學形態學運算,用于對第一階段中獲得的二值圖像進行去斑處理,第三階段為路徑中心線的定位及其方向角的測量。圖像傳感器與上位機的通信采用異步串行方式,由于上位機需要控制該傳感器執行多種任務,作者定義一種基于異步串行通信的應用層協議,用于上位機對傳感器的控制。在圖像的顯示中,為了彌補圖像采集的速率和VGA顯示速率的不匹配,作者提出一種基于單端口存儲器的圖像幀緩沖機制,通過VGA接口將采集的圖像實時地顯示出來。 根據上述思想,作者完成了系統的硬件電路設計,并對整個系統進行了現場調試。調試結果表明,傳感器系統的各個模塊都能正常工作,FPGA中的數字邏輯電路能夠實時地將路徑從圖像中準確地識別出來,.充分體現了FPGA對路徑圖像的高速處理優勢,達到了設計預期目標,在一定程度上豐富了路徑圖像識別處理的技術和方法。
上傳時間: 2013-04-24
上傳用戶:ghostparker
本文主要研究一種隔離器高速數據通信卡設計,并對基于PCI總線的內外網數據通訊和交換的硬件編程實現進行詳細的說明,最后在pc機windows平臺下對數據通信卡進行吞吐量和穩定性的測試。 首先介紹了網絡安全的現狀以及物理網絡隔離的原理和重要性,并敘述了網絡隔離產品的發展,接著介紹網絡隔離系統,并提出硬件平臺的總體設計方案:重點敘述了網閘內外網通訊的硬件核心數據通信卡設計思路和數據的流程,以及基于FPGA的PCI接口外部邏輯設計,并對該數據通訊卡在windows平臺雙機之間通訊作了測試,并對測試結果作了分析。
上傳時間: 2013-07-30
上傳用戶:muyehuli
本文應用EDA技術,基于FPGA器件設計與實現UART,并采用CRC校驗。主要工作如下: 1、在異步串行通信電路部分完全用FPGA來實現。選用Xilinx公司的SpartanⅢ系列的XC3S1000來實現異步串行通信的接收、發送和接口控制功能,利用FPGA集成度比較高,具有在線可編程能力,在其完成各種功能的同時,完全可以將串行通信接口構建其中,可根據實際需求分配資源。 2、利用VerilogHDL語言非常容易掌握,功能比VHDL更強大的特點,可以在設計時不斷修改程序,來適用不同規模的應用,而且采用Verilog輸入法與工藝性無關,利用系統設計時對芯片的要求,施加不同的約束條件,即可設計出實際電路。 3、利用ModelSim仿真工具對程序進行功能仿真和時序仿真,以驗證設計是否能獲得所期望的功能,確定設計程序配置到邏輯芯片之后是否可以運行,以及程序在目標器件中的時序關系。 4、為保證數據傳輸的正確性,采用循環冗余校驗CRC(CyclicRedundancyCheck),該編碼簡單,誤判概率低,為了減少硬件成本,降低硬件設計的復雜度,本設計通過CRC算法軟件實現。 實驗結果表明,基于EDA技術的現場可編程門陣列FPGA集成度高,結構靈活,設計方法多樣,開發周期短,調試方便,修改容易,采用FPGA較好地實現了串行數據的通信功能,并對數據作了一定的處理,本設計中為CRC校驗。另外,可以利用FPGA的在線可編程特性,對本設計電路進行功能擴展,以滿足更高的要求。
上傳時間: 2013-04-24
上傳用戶:Altman
軟件無線電是無線通信領域繼固定到移動、模擬到數字之后的第三次革命,是目前乃至未來的無線電領域的技術發展方向,它在提高系統靈活性上有無可比擬的優勢,是實現未來無線通信系統的有效手段。擴頻通信具有卓越的抗干擾和保密性能。擴頻通信相對于傳統的窄帶通信,在頻譜利用率上也有明顯的優勢,是未來無線通信系統中的關鍵技術,直接序列擴頻則是其中在民用領域使用最多的一種擴頻技術。FPGA在分布式計算、并行處理、流水線結構上有獨特的優勢,自然成為設計擴頻軟件無線電系統的首選技術之一。 首先介紹了軟件無線電的理論基礎,并分析了它的硬件結構和技術關鍵。軟件無線電的關鍵思路在于構建一個通用的強大的硬件平臺,這也正是本課題的主要工作之一。而后,重點介紹了直序擴頻的理論基礎。對于發射機,其中最關鍵的是尋找一種相關特性卓越的偽隨機序列,本課題主要對m序列、OVSF碼和Gold碼進行了深入研究。最后,詳述了基于DDFS的數字調制技術和FPGA技術。 基于以上理論基礎研究,根據軟件無線電硬件結構,開發了基于Altera公司Cyclone系列FPGA的硬件平臺。該平臺具有210Mbps的高速DAC,并配有串口、USB接口、音頻CODEC輸入輸出通道、以及LVDS擴展口和SDRAM,考慮到通用性,設計中加入了足以開發出接收機的兩路40Mbps的高速ADC。FPGA的代碼開發也是核心內容,本課題編寫了大量相應的代碼,包括加擴模塊(含偽隨機序列發生器)、基于DDFS的數字調制模塊以及串口通信模塊、LCD驅動模塊,SDRAM Controller、ADC驅動模塊,并編寫了相應的測試代碼。整個系統測試通過。關于硬件平臺設計和代碼開發,在本文第三章和第四章詳細介紹。 總體說來,本課題基于現有的理論發展,在充分理解相關理論的前提下,將主要經歷集中于具體應用的研究與開發,并取得了一定的成果。
上傳時間: 2013-06-27
上傳用戶:xauthu
LabVIEW串口通信程序設計LabVIEW串口通信程序設計LabVIEW串口通信程序設計LabVIEW串口通信程序設計
上傳時間: 2013-05-21
上傳用戶:奈雁歸dxh
隨著電子技術和集成電路技術的飛速發展,數字信號處理已經廣泛地應用于通信、信號處理、生物醫學以及自動控制等領域中。離散傅立葉變換(DFT)及其快速算法FFT作為數字信號處理中的基本變換,有著廣泛的應用。特別是近年來,基于FFT的ODFM技術的興起,進一步推動了對高速FFT處理器的研究。 FFT 算法從出現到現在已有四十多年代歷史,算法理論已經趨于成熟,但是其具體實現方法卻值得研究。面向高速、大容量數據流的FFT實時處理,可以通過數據并行處理或者采用多級流水線結構來實現。特別是流水線結構使得FFT處理器在進行不同點數的FFT計算時可以通過對模塊級數的控制很容易的實現。 本文在分析和比較了各種FFT算法后,選擇了基2和基4混合頻域抽取算法作為FFr處理器的實現算法,并提出了一種高速、處理點數可變的流水線結構FFT處理器的實現方法。利用這種方法實現的FFT處理器成功的應用到DAB接收機中,RTL級仿真結果表明FFT輸出結果與C模型輸出一致,在FPGA環境下仿真波形正確,用Ouaaus Ⅱ軟件綜合的最高工作頻率達到133MHz,滿足了高速處理的設計要求。
上傳時間: 2013-05-29
上傳用戶:GavinNeko
在數字化、信息化的時代,數字集成電路應用得非常廣泛。隨著微電子技術和工藝的發展,數字集成電路從電子管、晶體管、中小規模集成電路、超大規模集成電路(VLSIC)逐步發展到今天的專用集成電路(ASIC)。但是ASIC因其設計周期長,改版投資大,靈活性差等缺陷制約著它的應用范圍。可編程邏輯器件的出現彌補了ASIC的缺陷,使得設計的系統變得更加靈活,設計的電路體積更加小型化,重量更加輕型化,設計的成本更低,系統的功耗也更小了。FPGA是英文Field Programmable Gate Array的縮寫,即現場可編程門陣列,它是在PAL、GAL、EPID等可編程器件的基礎上進一步發展的產物。它是作為專用集成電路(ASIC)領域中的一種半定制電路而出現的,既解決了定制電路的不足,又克服了原有可編程器件門電路數有限的缺點。 本論文撰寫的是用FPGA來實現無人小飛機系統中基帶信號的處理過程。整個信號處理過程全部采用VHDL硬件描述語言來設計,并用Modelsim仿真系統功能進行調試,最后使用了Xilinx 公司可編程的FPGA芯片XC2S100完成,滿足系統設計的要求。 本文首先研究和討論了無線通信系統中基帶信號處理的總體結構,接著詳細闡述了各個模塊的設計原理和方法,以及FPGA結果分析,最后就關鍵技術和難點作了詳細的分析和研究。本文的最大特色是整個系統全部采用FPGA的方法來設計實現,修改靈活,體積小,功耗小。本系統的設計包括了數字鎖相環、糾錯編解碼、碼組交織、擾碼加入、巴克碼插入、幀同步識別、DPSK調制解調及選擇了整體的時序,所有的組成部分都經過了反復地修改和調試,取得了良好的數據處理效果,其關鍵之處與難點都得到了妥善地解決。本文分別在發射部分(編碼加調制)和接收部分(解調加解碼)相獨立和相聯系的情況下,獲得了仿真與實測結果。
上傳時間: 2013-07-05
上傳用戶:acon
8051處理器自誕生起近30年來,一直都是嵌入式應用的主流處理器,不同規模的805l處理器涵蓋了從低成本到高性能、從低密度到高密度的產品。該處理器極具靈活性,可讓開發者自行定義部分指令,量身訂制所需的功能模塊和外設接口,而且有標準版和經濟版等多種版本可供選擇,可讓設計人員各取所需,實現更高性價比的結構。如此多的優越性使得8051處理器牢固地占據著龐大的應用市場,因此研究和發展8051及與其兼容的接口具有極大的應用前景。在眾多8051的外設接口中,I2C總線接口扮演著重要的角色。通用的12C接口器件,如帶12C總線的RAM,ROM,AD/DA,LCD驅動器等,越來越多地應用于計算機及自動控制系統中。因此,本論文的根本目的就是針對如何在8051內核上擴展I2C外設接口進行較深入的研究。 本課題項目采用可編程技術來開發805l核以及12C接口。由于8051內核指令集相容,我們能借助在現有架構方面的經驗,發揮現有的大量代碼和工具的優勢,較快地完成設計。在8051核模塊里,我們主要實現中央處理器、程序存儲器、數據存儲器、定時/計數器、并行接口、串行接口和中斷系統等七大單元及數據總線、地址總線和控制總線等三大總線,這些都是標準8051核所具有的模塊。在其之上我們再嵌入12C的串行通信模塊,采用自下而上的方法,逐次實現一位的收發、一個字節的收發、一個命令的收發,直至實現I2C的整個通信協議。 8051核及I2C總線的研究通過可編程邏輯器件和一塊外圍I2C從設備TMPl01來驗證。本課題的最終目的是可編程邏輯器件實現的8051核成功并高效地控制擴展的12C接口與從設備TMPl01通信。 用EP2C35F672C6芯片開發的12C接口,數據的傳輸速率由該芯片嵌入8051微處理的時鐘頻率決定。經測試其傳輸速率可達普通速率和快速速率。 目前集成了該12C接口的8051核已經在工作中投入使用,主要用于POS設備的用戶數據加密及對設備溫度的實時控制。雖然該設備尚未大批量投產,但它已成功通過PCI(PaymentCardIndustry)協會認證。
上傳時間: 2013-06-18
上傳用戶:731140412
在數字通信中,采用差錯控制技術(糾錯碼)是提高信號傳輸可靠性的有效手段,并發揮著越來越重要的作用。糾錯碼主要有分組碼和卷積碼兩種。在碼率和編碼器復雜程度相同的情況下,卷積碼的性能優于分組碼。 卷積碼的譯碼方法主要有代數譯碼和概率譯碼。代數譯碼是基于碼的代數結構;而概率譯碼不僅基于碼的代數結構,還利用了信道的統計特性,能充分發揮卷積碼的特點,使譯碼錯誤概率達到很小。 卷積碼譯碼器的設計是由高性能的復雜譯碼器開始的,對于概率譯碼最初的序列譯碼,隨著譯碼約束長度的增加,其譯碼錯誤概率可達到非常小。后來慢慢地向低性能的簡單譯碼器演化,對不太長的約束長度,維特比(Viterbi)算法是非常實用的。維特比算法是一種最大似然的譯碼方法。當編碼約束度不太大(小于等于10)或者誤碼率要求不太高(約10-5)時,Viterbi譯碼算法效率很高,速度很快,譯碼器也較簡單。 目前,卷積碼在數傳系統,尤其是在衛星通信、移動通信等領域已被廣泛應用。 本論文對卷積碼編碼和Viterbi譯碼的設計原理及其FPGA實現方案進行了研究。同時,將交織和解交織技術應用于編碼和解碼的過程中。 首先,簡要介紹了卷積碼的基礎知識和維特比譯碼算法的基本原理,并對硬判決譯碼和軟判決譯碼方法進行了比較。其次,討論了交織和解交織技術及其在糾錯碼中的應用。然后,介紹了FPGA硬件資源和軟件開發環境Quartus Ⅱ,包括數字系統的設計方法和設計規則。再有,對基于FPGA的維特比譯碼器各個模塊和相應算法實現、優化進行了研究。最后,在Quartus Ⅱ平臺上對硬判決譯碼和軟判決譯碼以及有無交織等不同情況進行了仿真,并根據仿真結果分析了維特比譯碼器的性能。 分析結果表明,系統的誤碼率達到了設計要求,從而驗證了譯碼器設計的可靠性,所設計基于FPGA的并行Viterbi譯碼器適用于高速數據傳輸的場合。
上傳時間: 2013-04-24
上傳用戶:zhenyushaw
隨著計算機技術和通信技術的迅速發展,數字視頻在信息社會中發揮著越來越重要的作用,視頻傳輸系統已經被廣泛應用于交通管理、工業監控、廣播電視、銀行、商場等多個領域。同時,FPGA單片規模的不斷擴大,在FPGA芯片內部實現復雜的數字信號處理系統也成為現實,因此采用FPGA實現視頻壓縮和傳輸已成為一種最佳選擇。 本文將視頻壓縮技術和光纖傳輸技術相結合,設計了一種基于無損壓縮算法的多路數字視頻光纖傳輸系統,系統利用時分復用和無損壓縮技術,采用串行數字視頻傳輸的方式,可在一根光纖中同時傳輸8路以上視頻信號。系統在總體設計時,確定了基于FPGA的設計方案,采用ADI公司的AD9280和AD9708芯片實現A/D轉換和D/A轉換,在FPGA里實現系統的時分復用/解復用、視頻數據壓縮/解壓縮和線路碼編解碼,利用光收發一體模塊實現電光轉換和光電轉換。視頻壓縮采用LZW無損壓縮算法,用Verilog語言設計了壓縮模塊和解壓縮模塊,利用Xilinx公司的IP核生成工具Core Generator生成FIFO來緩存壓縮/解壓縮單元的輸入輸出數據,光纖線路碼采用CIMT碼,設計了編解碼模塊,解碼過程中,利用數字鎖相環來實現發射與接收的幀同步,在ISE8.2和Modelsim仿真環境下對FPGA模塊進行了功能仿真和時序仿真,并在Spartan-3E開發板和視頻擴展板上完成了系統的硬件調試與驗證工作,實驗證明,系統工作穩定,圖像清晰,實時傳輸效果好,可用于交通、安防、工業監控等多個領域。 本文將視頻壓縮和線路碼編解碼在FPGA里實現,利用FPGA的并行處理優勢,大大提高了系統的處理速度,使系統具有集成度高、靈活性強、調試方便、抗干擾能力強、易于升級等特點。
上傳時間: 2013-04-24
上傳用戶:gzming