PIC 單片機(jī)C 語言編程簡介用C 語言來開發(fā)單片機(jī)系統(tǒng)軟件最大的好處是編寫代碼效率高、軟件調(diào)試直觀、維護(hù)升級方便、代碼的重復(fù)利用率高、便于跨平臺的代碼移植等等,因此C 語言編程在單片機(jī)系統(tǒng)設(shè)計(jì)中已得到越來越廣泛的運(yùn)用。針對PIC 單片機(jī)的軟件開發(fā),同樣可以用C 語言實(shí)現(xiàn)。但在單片機(jī)上用C 語言寫程序和在PC 機(jī)上寫程序絕對不能簡單等同。現(xiàn)在的PC 機(jī)資源十分豐富,運(yùn)算能力強(qiáng)大,因此程序員在寫PC 機(jī)的應(yīng)用程序時(shí)幾乎不用關(guān)心編譯后的可執(zhí)行代碼在運(yùn)行過程中需要占用多少系統(tǒng)資源,也基本不用擔(dān)心運(yùn)行效率有多高。寫單片機(jī)的C 程序最關(guān)鍵的一點(diǎn)是單片機(jī)內(nèi)的資源非常有限,控制的實(shí)時(shí)性要求又很高,因此,如果沒有對單片機(jī)體系結(jié)構(gòu)和硬件資源作詳盡的了解,以筆者的愚見認(rèn)為是無法寫出高質(zhì)量實(shí)用的C 語言程序。這就是為什么前面所有章節(jié)中的的示范代碼全部用基礎(chǔ)的匯編指令實(shí)現(xiàn)的原因,希望籍此能使讀者對PIC 單片機(jī)的指令體系和硬件資源有深入了解,在這基礎(chǔ)之上再來討論C 語言編程,就有水到渠成的感覺。本書圍繞中檔系列PIC 單片機(jī)來展開討論,Microchip 公司自己沒有針對中低檔系列PIC單片機(jī)的C 語言編譯器,但很多專業(yè)的第三方公司有眾多支持PIC 單片機(jī)的C 語言編譯器提供,常見的有Hitech、CCS、IAR、Bytecraft 等公司。其中筆者最常用的是Hitech 公司的PICC 編譯器,它穩(wěn)定可靠,編譯生成的代碼效率高,在用PIC 單片機(jī)進(jìn)行系統(tǒng)設(shè)計(jì)和開發(fā)的工程師群體中得到廣泛認(rèn)可。其正式完全版軟件需要購置,但在其網(wǎng)站上有限時(shí)的試用版供用戶評估。另外,Hitech 公司針對廣大PIC 的業(yè)余愛好者和初學(xué)者還提供了完全免費(fèi)的學(xué)習(xí)版PICC-Lite 編譯器套件,它的使用方式和完全版相同,只是支持的PIC 單片機(jī)型號限制在PIC16F84、PIC16F877 和PIC16F628 等幾款。這幾款Flash 型的單片機(jī)因其所具備的豐富的片上資源而最適用于單片機(jī)學(xué)習(xí)入門,因此筆者建議感興趣的讀者可從PICC-Lite 入手掌握PIC 單片機(jī)的C 語言編程。
標(biāo)簽: pic 單片機(jī)c語言 教程
上傳時(shí)間: 2013-11-17
上傳用戶:15527161163
基于半導(dǎo)體集成技術(shù)的突飛猛進(jìn)的發(fā)展各種類型的單片機(jī)正日新月異的涌向市場為單片機(jī)技術(shù)的應(yīng)用人員提供了極大的方便INTEL公司在MCS48系列的基礎(chǔ)上推出高性能的MCS51系列八位單片機(jī)而今三十二位單片機(jī)又以其強(qiáng)大的片內(nèi)功能提供給應(yīng)用者無論是那一種位數(shù)的單片機(jī)也無論是那一種系列的單片機(jī)都為新產(chǎn)品的開發(fā)應(yīng)用系統(tǒng)的研制智能控制器的研究高新技術(shù)的應(yīng)用創(chuàng)造了極其有力的硬件環(huán)境當(dāng)前可以說由于世界各生產(chǎn)廠家生產(chǎn)通用型以及衍生出的五花八門的系列及型號的單片機(jī)使其單片機(jī)技術(shù)的應(yīng)用已達(dá)到了無孔不入的地步當(dāng)初面向工業(yè)控制功能的單片機(jī)現(xiàn)已遠(yuǎn)遠(yuǎn)超出了原設(shè)計(jì)者的想像然而占全球單片機(jī)銷量60%65%左右的八位單片機(jī)仍是當(dāng)前應(yīng)用的主流就國內(nèi)應(yīng)用實(shí)踐而言使用單片機(jī)數(shù)量最大的是八位單片機(jī)應(yīng)用范圍最廣的是八位單片機(jī)八位單片機(jī)仍具有時(shí)代的魅力INTEL公司推出的高性能MCS51系列八位單片機(jī)一投入市場里很快被使用者所歡迎隨著時(shí)間的推移世界各生產(chǎn)單片機(jī)的公司看好MCS51系列八位單片機(jī)的強(qiáng)勁趨勢在八位單片機(jī)的設(shè)計(jì)上紛紛向51系列八位單片機(jī)內(nèi)核靠攏PHILIPS公司首先購買了8051內(nèi)核的使用權(quán)并在此基礎(chǔ)上增加具有自身特點(diǎn)的I2C總線PHILIPS公司并推出一系列高性能具有快閃存儲器的標(biāo)準(zhǔn)的80C51派生型八位機(jī)單片機(jī)很方便的多次在線編程為用戶帶來極大方便ATMEL公司通過技術(shù)交換取得了80C31內(nèi)核的使用權(quán)生產(chǎn)出AT89C系列單片機(jī)SIEMENS公司SABC5系列八位單片機(jī)C500CPU與80C51完全兼容臺灣WINBOND公司生產(chǎn)的W78系列八位單片機(jī)南韓LG半導(dǎo)體公司生產(chǎn)GMS90/97系列八位單片機(jī)也都與標(biāo)準(zhǔn)的8051兼容由北京集成電路設(shè)計(jì)中心設(shè)計(jì)的BT/AT89C51也與MCS51系列八位單片機(jī)在指令系統(tǒng)和引腳上完全兼容總部位于美國德克薩斯州的美國Cygnal公司是1999年3月成立的一家新興的半導(dǎo)體公司公司專業(yè)從事混合信號片上系統(tǒng)單片機(jī)的設(shè)計(jì)與制造公司看好了八位單片機(jī)的市場前景至目前更新了原51單片機(jī)結(jié)構(gòu)設(shè)計(jì)了具有自主產(chǎn)權(quán)的CIP-51內(nèi)核使得51單片機(jī)煥發(fā)了新的生命力其運(yùn)行速度高達(dá)每秒25MIPS現(xiàn)已設(shè)計(jì)并為市場提供了29個品種的C8051F系列片上系統(tǒng)單片機(jī)預(yù)計(jì)今年年內(nèi)還將完成20多個新的片上系統(tǒng)單片機(jī)的設(shè)計(jì)經(jīng)過3年的穩(wěn)步發(fā)展已成長為半導(dǎo)體業(yè)界一顆耀眼的新星Cygnal C8051F系列單片機(jī)由沈陽新華龍電子有限公司于2001年引進(jìn)中國大陸并于11月2001嵌入式系統(tǒng)及單片機(jī)國際學(xué)術(shù)交流會暨產(chǎn)品展示會上首次亮相受到與會者的極大關(guān)注
上傳時(shí)間: 2013-10-09
上傳用戶:xitai
具有梯形反電動勢的永磁同步電動機(jī)通常被稱為無刷直流電動機(jī),它具有結(jié)構(gòu)簡單、體積小、重量輕、效率高、高功率密度、啟動扭矩大、慣量小和響應(yīng)快等其它種類直流電機(jī)無法比擬的特性。采用電子換向器替代了傳統(tǒng)直流電動機(jī)的機(jī)械換向裝置,從而克服了電刷和換向器所引起的噪聲、火花、電磁干擾、壽命短等一系列弊病。由于無刷直流電動機(jī)既具備交流電動機(jī)的結(jié)構(gòu)簡單、運(yùn)行可靠、維護(hù)方便等一系列優(yōu)點(diǎn),又具 有直流電動機(jī)的運(yùn)行效率高、無勵磁損耗以及調(diào)速性能好等諸多優(yōu)點(diǎn),故其在在家用消費(fèi)類產(chǎn)品(空調(diào)、冰箱、洗衣機(jī))和IT周邊產(chǎn)品(打印機(jī)、軟驅(qū)、硬驅(qū))中得到廣泛的應(yīng)用。 C8051F單片機(jī)是美國Silabs公司推出的一種與51系列單片機(jī)內(nèi)核兼容的單片機(jī),具有高速、高性能、高集成度。以C8051F020為例,具有如下特點(diǎn): C8051F020片上系統(tǒng)單片機(jī)片內(nèi)資源: 一、模塊外設(shè) (1)逐次逼近型8路12位ADC0 轉(zhuǎn)換速率最大100ksps 可編程增益放大器PGA 溫度傳感器 (2)8路8位ADC1輸入與P1口復(fù)用 轉(zhuǎn)換速率500ksps 可編程增益放大器PGA (3)兩個12 位DAC (4)兩個模擬電壓比較器 (5)電壓基準(zhǔn)內(nèi)部提供2.43V 外部基準(zhǔn)可輸入 (6)精確的VDD監(jiān)視器 二、高速8051微控制器內(nèi)核 流水線式指令結(jié)構(gòu)速度可達(dá)25MIPS 22個矢量中斷源 三、存儲器 片內(nèi)4352字節(jié)數(shù)據(jù)RAM 64KBFlash程序存儲器可作非易失性存儲
標(biāo)簽: C8051F 單片機(jī) 直流無刷 電機(jī)轉(zhuǎn)速
上傳時(shí)間: 2013-12-21
上傳用戶:bnfm
atmega8原理與及應(yīng)用手冊,ATmega8 是ATMEL公司在2002年第一季度推出的一款新型AVR高檔單片機(jī)。在AVR家族中,ATmega8是一種非常特殊的單片機(jī),它的芯片內(nèi)部集成了較大 容量的存儲器和豐富強(qiáng)大的硬件接口電路,具備AVR高檔單片機(jī)MEGE系列的全部性能和特點(diǎn)。但由于采用了小引腳封裝(為DIP 28和TQFP/MLF32),所以其價(jià)格僅與低檔單片機(jī)相當(dāng),再加上AVR單片機(jī)的系統(tǒng)內(nèi)可編程特性,使得無需購買昂貴的仿真器和編程器也可進(jìn)行單片機(jī) 嵌入式系統(tǒng)的設(shè)計(jì)和開發(fā),同時(shí)也為單片機(jī)的初學(xué)者提供了非常方便和簡捷的學(xué)習(xí)開發(fā)環(huán)境。 ATmega8的這些特點(diǎn),使其成為一款具有極高性能價(jià)格比的單片機(jī),深受廣大單片機(jī)用戶的喜愛,在產(chǎn)品應(yīng)用市場上極具競爭力,被很多家用電器廠商和儀器儀表行業(yè)看中,從而使ATmega8迅速進(jìn)入大批量的應(yīng)用領(lǐng)域。 ATmega系列單片機(jī)屬于AVR中的高檔產(chǎn)品,它承襲了AT90所具有的特點(diǎn),并在AT90(如 AT9058515、AT9058535)的基礎(chǔ)上,增加了更多的接口功能,而且在省電性能。穩(wěn)定性、抗干擾性以及靈活性方面考慮得更加周全和完善。 ATmega8 是一款采用低功耗CMOS工藝生產(chǎn)的基于AVR RISC結(jié)構(gòu)的8位單片機(jī)。AVR單片機(jī)的核心是將32個工作寄存器和豐富的指令集聯(lián)結(jié)在一起,所有的工作寄存器都與ALU(算術(shù)邏輯單元)直接相連,實(shí) 現(xiàn)了在一個時(shí)鐘周期內(nèi)執(zhí)行的一條指令同時(shí)訪問(讀寫)兩個獨(dú)立寄存器的操作。這種結(jié)構(gòu)提高了代碼效率,使得大部分指令的執(zhí)行時(shí)間僅為一個時(shí)鐘周期。因此, ATmega8可以達(dá)到接近1MIPS/MHz的性能,運(yùn)行速度比普通CISC單片機(jī)高出10倍。
標(biāo)簽: atmega8 應(yīng)用手冊
上傳時(shí)間: 2013-11-08
上傳用戶:朗朗乾坤
存儲器技術(shù).doc 計(jì)算機(jī)的主存儲器(Main Memory),又稱為內(nèi)部存儲器,簡稱為內(nèi)存。內(nèi)存實(shí)質(zhì)上是一組或多組具備數(shù)據(jù)輸入輸出和數(shù)據(jù)存儲功能的集成電路。內(nèi)存的主要作用是用來存放計(jì)算機(jī)系統(tǒng)執(zhí)行時(shí)所需要的數(shù)據(jù),存放各種輸入、輸出數(shù)據(jù)和中間計(jì)算結(jié)果,以及與外部存儲器交換信息時(shí)作為緩沖用。由于CPU只能直接處理內(nèi)存中的數(shù)據(jù) ,所以內(nèi)存是計(jì)算機(jī)系統(tǒng)中不可缺少的部件。內(nèi)存的品質(zhì)直接關(guān)系到計(jì)算機(jī)系統(tǒng)的速度、穩(wěn)定性和兼容性。 4.1 存儲器類型計(jì)算機(jī)內(nèi)部存儲器有兩種類型,一種稱為只讀存儲器ROM(Read Only Memiry),另一種稱為隨機(jī)存儲器RAM(Random Access Memiry)。 4.1.1 只讀存儲器只讀存儲器ROM主要用于存放計(jì)算機(jī)固化的控制程序,如主板的BIOS程序、顯卡BIOS控制程序、硬盤控制程序等。ROM的典型特點(diǎn)是:一旦將數(shù)據(jù)寫入ROM中后,即使在斷電的情況下也能夠永久的保存數(shù)據(jù)。從使用上講,一般用戶能從ROM中讀取數(shù)據(jù),而不能改寫其中的數(shù)據(jù)。但現(xiàn)在為了做一日和尚撞一天鐘于軟件或硬件程序升級,普通用戶使用所謂的閃存(Flash Memiry)也可以有條件地改變ROM中的數(shù)據(jù)。有關(guān)只讀存儲器ROM的內(nèi)容將在第11章中介紹,本章主要介紹隨機(jī)存儲器。4.1.2 隨機(jī)存取存儲器隨機(jī)存取存儲器RAM的最大特點(diǎn)是計(jì)算機(jī)可以隨時(shí)改變RAM中的數(shù)據(jù),并且一旦斷電,TAM中數(shù)據(jù)就會立即丟失,也就是說,RAM中的數(shù)據(jù)在斷電后是不能保留的。從用于制造隨機(jī)存取存儲器的材料上看,RAM又可分為靜態(tài)隨機(jī)存儲器SRAM(Static RAM)和動態(tài)隨機(jī)存儲器DRAM(Dymamic RAM)兩種。1. 動態(tài)隨機(jī)存儲器在DRAM中數(shù)據(jù)是以電荷的形式存儲在電容上的,充電后電容上的電壓被認(rèn)為是邏輯上的“1”,而放電后的電容上的電壓被認(rèn)為是邏輯上的“0”認(rèn)。為了減少存儲器的引腳數(shù),就反存儲器芯片的每個基本單元按行、列矩陣形式連接起來,使每個存儲單元位于行、列的交叉點(diǎn)。這樣每個存儲單元的地址做一日和尚撞一天鐘可以用位數(shù)較少的行地址和列地址兩個部分表示,在對每個單元進(jìn)行讀寫操作時(shí),就可以采用分行、列尋址方式寫入或讀出相應(yīng)的數(shù)據(jù),如圖4-1所示。 由于電容充電后,電容會緩慢放電,電容 上的電荷會逐漸
標(biāo)簽: 存儲器
上傳時(shí)間: 2014-01-10
上傳用戶:18752787361
單片機(jī)應(yīng)用系統(tǒng)抗干擾技術(shù):第1章 電磁干擾控制基礎(chǔ). 1.1 電磁干擾的基本概念1 1.1.1 噪聲與干擾1 1.1.2 電磁干擾的形成因素2 1.1.3 干擾的分類2 1.2 電磁兼容性3 1.2.1 電磁兼容性定義3 1.2.2 電磁兼容性設(shè)計(jì)3 1.2.3 電磁兼容性常用術(shù)語4 1.2.4 電磁兼容性標(biāo)準(zhǔn)6 1.3 差模干擾和共模干擾8 1.3.1 差模干擾8 1.3.2 共模干擾9 1.4 電磁耦合的等效模型9 1.4.1 集中參數(shù)模型9 1.4.2 分布參數(shù)模型10 1.4.3 電磁波輻射模型11 1.5 電磁干擾的耦合途徑14 1.5.1 傳導(dǎo)耦合14 1.5.2 感應(yīng)耦合(近場耦合)15 .1.5.3 電磁輻射耦合(遠(yuǎn)場耦合)15 1.6 單片機(jī)應(yīng)用系統(tǒng)電磁干擾控制的一般方法16 第2章 數(shù)字信號耦合與傳輸機(jī)理 2.1 數(shù)字信號與電磁干擾18 2.1.1 數(shù)字信號的開關(guān)速度與頻譜18 2.1.2 開關(guān)暫態(tài)電源尖峰電流噪聲22 2.1.3 開關(guān)暫態(tài)接地反沖噪聲24 2.1.4 高速數(shù)字電路的EMI特點(diǎn)25 2.2 導(dǎo)線阻抗與線間耦合27 2.2.1 導(dǎo)體交直流電阻的計(jì)算27 2.2.2 導(dǎo)體電感量的計(jì)算29 2.2.3 導(dǎo)體電容量的計(jì)算31 2.2.4 電感耦合分析32 2.2.5 電容耦合分析35 2.3 信號的長線傳輸36 2.3.1 長線傳輸過程的數(shù)學(xué)描述36 2.3.2 均勻傳輸線特性40 2.3.3 傳輸線特性阻抗計(jì)算42 2.3.4 傳輸線特性阻抗的重復(fù)性與阻抗匹配44 2.4 數(shù)字信號傳輸過程中的畸變45 2.4.1 信號傳輸?shù)娜肷浠?5 2.4.2 信號傳輸?shù)姆瓷浠?6 2.5 信號傳輸畸變的抑制措施49 2.5.1 最大傳輸線長度的計(jì)算49 2.5.2 端點(diǎn)的阻抗匹配50 2.6 數(shù)字信號的輻射52 2.6.1 差模輻射52 2.6.2 共模輻射55 2.6.3 差模和共模輻射比較57 第3章 常用元件的可靠性能與選擇 3.1 元件的選擇與降額設(shè)計(jì)59 3.1.1 元件的選擇準(zhǔn)則59 3.1.2 元件的降額設(shè)計(jì)59 3.2 電阻器60 3.2.1 電阻器的等效電路60 3.2.2 電阻器的內(nèi)部噪聲60 3.2.3 電阻器的溫度特性61 3.2.4 電阻器的分類與主要參數(shù)62 3.2.5 電阻器的正確選用66 3.3 電容器67 3.3.1 電容器的等效電路67 3.3.2 電容器的種類與型號68 3.3.3 電容器的標(biāo)志方法70 3.3.4 電容器引腳的電感量71 3.3.5 電容器的正確選用71 3.3.6 電容器使用注意事項(xiàng)73 3.4 電感器73 3.4.1 電感器的等效電路74 3.4.2 電感器使用的注意事項(xiàng)74 3.5 數(shù)字集成電路的抗干擾性能75 3.5.1 噪聲容限與抗干擾能力75 3.5.2 施密特集成電路的噪聲容限77 3.5.3 TTL數(shù)字集成電路的抗干擾性能78 3.5.4 CMOS數(shù)字集成電路的抗干擾性能79 3.5.5 CMOS電路使用中注意事項(xiàng)80 3.5.6 集成門電路系列型號81 3.6 高速CMOS 54/74HC系列接口設(shè)計(jì)83 3.6.1 54/74HC 系列芯片特點(diǎn)83 3.6.2 74HC與TTL接口85 3.6.3 74HC與單片機(jī)接口85 3.7 元器件的裝配工藝對可靠性的影響86 第4章 電磁干擾硬件控制技術(shù) 4.1 屏蔽技術(shù)88 4.1.1 電場屏蔽88 4.1.2 磁場屏蔽89 4.1.3 電磁場屏蔽91 4.1.4 屏蔽損耗的計(jì)算92 4.1.5 屏蔽體屏蔽效能的計(jì)算99 4.1.6 屏蔽箱的設(shè)計(jì)100 4.1.7 電磁泄漏的抑制措施102 4.1.8 電纜屏蔽層的屏蔽原理108 4.1.9 屏蔽與接地113 4.1.10 屏蔽設(shè)計(jì)要點(diǎn)113 4.2 接地技術(shù)114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系統(tǒng)的布局119 4.2.5 接地裝置和接地電阻120 4.2.6 地環(huán)路問題121 4.2.7 浮地方式122 4.2.8 電纜屏蔽層接地123 4.3 濾波技術(shù)126 4.3.1 濾波器概述127 4.3.2 無源濾波器130 4.3.3 有源濾波器138 4.3.4 鐵氧體抗干擾磁珠143 4.3.5 貫通濾波器146 4.3.6 電纜線濾波連接器149 4.3.7 PCB板濾波器件154 4.4 隔離技術(shù)155 4.4.1 光電隔離156 4.4.2 繼電器隔離160 4.4.3 變壓器隔離 161 4.4.4 布線隔離161 4.4.5 共模扼流圈162 4.5 電路平衡結(jié)構(gòu)164 4.5.1 雙絞線在平衡電路中的使用164 4.5.2 同軸電纜的平衡結(jié)構(gòu)165 4.5.3 差分放大器165 4.6 雙絞線的抗干擾原理及應(yīng)用166 4.6.1 雙絞線的抗干擾原理166 4.6.2 雙絞線的應(yīng)用168 4.7 信號線間的串?dāng)_及抑制169 4.7.1 線間串?dāng)_分析169 4.7.2 線間串?dāng)_的抑制173 4.8 信號線的選擇與敷設(shè)174 4.8.1 信號線型式的選擇174 4.8.2 信號線截面的選擇175 4.8.3 單股導(dǎo)線的阻抗分析175 4.8.4 信號線的敷設(shè)176 4.9 漏電干擾的防止措施177 4.10 抑制數(shù)字信號噪聲常用硬件措施177 4.10.1 數(shù)字信號負(fù)傳輸方式178 4.10.2 提高數(shù)字信號的電壓等級178 4.10.3 數(shù)字輸入信號的RC阻容濾波179 4.10.4 提高輸入端的門限電壓181 4.10.5 輸入開關(guān)觸點(diǎn)抖動干擾的抑制方法181 4.10.6 提高器件的驅(qū)動能力184 4.11 靜電放電干擾及其抑制184 第5章 主機(jī)單元配置與抗干擾設(shè)計(jì) 5.1 單片機(jī)主機(jī)單元組成特點(diǎn)186 5.1.1 80C51最小應(yīng)用系統(tǒng)186 5.1.2 低功耗單片機(jī)最小應(yīng)用系統(tǒng)187 5.2 總線的可靠性設(shè)計(jì)191 5.2.1 總線驅(qū)動器191 5.2.2 總線的負(fù)載平衡192 5.2.3 總線上拉電阻的配置192 5.3 芯片配置與抗干擾193 5.3.1去耦電容配置194 5.3.2 數(shù)字輸入端的噪聲抑制194 5.3.3 數(shù)字電路不用端的處理195 5.3.4 存儲器的布線196 5.4 譯碼電路的可靠性分析197 5.4.1 過渡干擾與譯碼選通197 5.4.2 譯碼方式與抗干擾200 5.5 時(shí)鐘電路配置200 5.6 復(fù)位電路設(shè)計(jì)201 5.6.1 復(fù)位電路RC參數(shù)的選擇201 5.6.2 復(fù)位電路的可靠性與抗干擾分析202 5.6.3 I/O接口芯片的延時(shí)復(fù)位205 5.7 單片機(jī)系統(tǒng)的中斷保護(hù)問題205 5.7.1 80C51單片機(jī)的中斷機(jī)構(gòu)205 5.7.2 常用的幾種中斷保護(hù)措施205 5.8 RAM數(shù)據(jù)掉電保護(hù)207 5.8.1 片內(nèi)RAM數(shù)據(jù)保護(hù)207 5.8.2 利用雙片選的外RAM數(shù)據(jù)保護(hù)207 5.8.3 利用DS1210實(shí)現(xiàn)外RAM數(shù)據(jù)保護(hù)208 5.8.4 2 KB非易失性隨機(jī)存儲器DS1220AB/AD211 5.9 看門狗技術(shù)215 5.9.1 由單穩(wěn)態(tài)電路實(shí)現(xiàn)看門狗電路216 5.9.2 利用單片機(jī)片內(nèi)定時(shí)器實(shí)現(xiàn)軟件看門狗217 5.9.3 軟硬件結(jié)合的看門狗技術(shù)219 5.9.4 單片機(jī)內(nèi)配置看門狗電路221 5.10 微處理器監(jiān)控器223 5.10.1 微處理器監(jiān)控器MAX703~709/813L223 5.10.2 微處理器監(jiān)控器MAX791227 5.10.3 微處理器監(jiān)控器MAX807231 5.10.4 微處理器監(jiān)控器MAX690A/MAX692A234 5.10.5 微處理器監(jiān)控器MAX691A/MAX693A238 5.10.6 帶備份電池的微處理器監(jiān)控器MAX1691242 5.11 串行E2PROM X25045245 第6章 測量單元配置與抗干擾設(shè)計(jì) 6.1 概述255 6.2 模擬信號放大器256 6.2.1 集成運(yùn)算放大器256 6.2.2 測量放大器組成原理260 6.2.3 單片集成測量放大器AD521263 6.2.4 單片集成測量放大器AD522265 6.2.5 單片集成測量放大器AD526266 6.2.6 單片集成測量放大器AD620270 6.2.7 單片集成測量放大器AD623274 6.2.8 單片集成測量放大器AD624276 6.2.9 單片集成測量放大器AD625278 6.2.10 單片集成測量放大器AD626281 6.3 電壓/電流變換器(V/I)283 6.3.1 V/I變換電路..283 6.3.2 集成V/I變換器XTR101284 6.3.3 集成V/I變換器XTR110289 6.3.4 集成V/I變換器AD693292 6.3.5 集成V/I變換器AD694299 6.4 電流/電壓變換器(I/V)302 6.4.1 I/V變換電路302 6.4.2 RCV420型I/V變換器303 6.5 具有放大、濾波、激勵功能的模塊2B30/2B31305 6.6 模擬信號隔離放大器313 6.6.1 隔離放大器ISO100313 6.6.2 隔離放大器ISO120316 6.6.3 隔離放大器ISO122319 6.6.4 隔離放大器ISO130323 6.6.5 隔離放大器ISO212P326 6.6.6 由兩片VFC320組成的隔離放大器329 6.6.7 由兩光耦組成的實(shí)用線性隔離放大器333 6.7 數(shù)字電位器及其應(yīng)用336 6.7.1 非易失性數(shù)字電位器x9221336 6.7.2 非易失性數(shù)字電位器x9241343 6.8 傳感器供電電源的配置及抗干擾346 6.8.1 傳感器供電電源的擾動補(bǔ)償347 6.8.2 單片集成精密電壓芯片349 6.8.3 A/D轉(zhuǎn)換器芯片提供基準(zhǔn)電壓350 6.9 測量單元噪聲抑制措施351 6.9.1 外部噪聲源的干擾及其抑制351 6.9.2 輸入信號串模干擾的抑制352 6.9.3 輸入信號共模干擾的抑制353 6.9.4 儀器儀表的接地噪聲355 第7章 D/A、A/D單元配置與抗干擾設(shè)計(jì) 7.1 D/A、A/D轉(zhuǎn)換器的干擾源357 7.2 D/A轉(zhuǎn)換原理及抗干擾分析358 7.2.1 T型電阻D/A轉(zhuǎn)換器359 7.2.2 基準(zhǔn)電源精度要求361 7.2.3 D/A轉(zhuǎn)換器的尖峰干擾362 7.3 典型D/A轉(zhuǎn)換器與單片機(jī)接口363 7.3.1 并行12位D/A轉(zhuǎn)換器AD667363 7.3.2 串行12位D/A轉(zhuǎn)換器MAX5154370 7.4 D/A轉(zhuǎn)換器與單片機(jī)的光電接口電路377 7.5 A/D轉(zhuǎn)換器原理與抗干擾性能378 7.5.1 逐次比較式ADC原理378 7.5.2 余數(shù)反饋比較式ADC原理378 7.5.3 雙積分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D轉(zhuǎn)換器與單片機(jī)接口387 7.6.18 位并行逐次比較式MAX 118387 7.6.28 通道12位A/D轉(zhuǎn)換器MAX 197394 7.6.3 雙積分式A/D轉(zhuǎn)換器5G14433399 7.6.4 V/F轉(zhuǎn)換器AD 652在A/D轉(zhuǎn)換器中的應(yīng)用403 7.7 采樣保持電路與抗干擾措施408 7.8 多路模擬開關(guān)與抗干擾措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路開關(guān)配置與抗干擾技術(shù)413 7.9 D/A、A/D轉(zhuǎn)換器的電源、接地與布線416 7.10 精密基準(zhǔn)電壓電路與噪聲抑制416 7.10.1 基準(zhǔn)電壓電路原理417 7.10.2 引腳可編程精密基準(zhǔn)電壓源AD584418 7.10.3 埋入式齊納二極管基準(zhǔn)AD588420 7.10.4 低漂移電壓基準(zhǔn)MAX676/MAX677/MAX678422 7.10.5 低功率低漂移電壓基準(zhǔn)MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密電壓基準(zhǔn)電路430 第8章 功率接口與抗干擾設(shè)計(jì) 8.1 功率驅(qū)動元件432 8.1.1 74系列功率集成電路432 8.1.2 75系列功率集成電路433 8.1.3 MOC系列光耦合過零觸發(fā)雙向晶閘管驅(qū)動器435 8.2 輸出控制功率接口電路438 8.2.1 繼電器輸出驅(qū)動接口438 8.2.2 繼電器—接觸器輸出驅(qū)動電路439 8.2.3 光電耦合器—晶閘管輸出驅(qū)動電路439 8.2.4 脈沖變壓器—晶閘管輸出電路440 8.2.5 單片機(jī)與大功率單相負(fù)載的接口電路441 8.2.6 單片機(jī)與大功率三相負(fù)載間的接口電路442 8.3 感性負(fù)載電路噪聲的抑制442 8.3.1 交直流感性負(fù)載瞬變噪聲的抑制方法442 8.3.2 晶閘管過零觸發(fā)的幾種形式445 8.3.3 利用晶閘管抑制感性負(fù)載的瞬變噪聲447 8.4 晶閘管變流裝置的干擾和抑制措施448 8.4.1 晶閘管變流裝置電氣干擾分析448 8.4.2 晶閘管變流裝置的抗干擾措施449 8.5 固態(tài)繼電器451 8.5.1 固態(tài)繼電器的原理和結(jié)構(gòu)451 8.5.2 主要參數(shù)與選用452 8.5.3 交流固態(tài)繼電器的使用454 第9章 人機(jī)對話單元配置與抗干擾設(shè)計(jì) 9.1 鍵盤接口抗干擾問題456 9.2 LED顯示器的構(gòu)造與特點(diǎn)458 9.3 LED的驅(qū)動方式459 9.3.1 采用限流電阻的驅(qū)動方式459 9.3.2 采用LM317的驅(qū)動方式460 9.3.3 串聯(lián)二極管壓降驅(qū)動方式462 9.4 典型鍵盤/顯示器接口芯片與單片機(jī)接口463 9.4.1 8位LED驅(qū)動器ICM 7218B463 9.4.2 串行LED顯示驅(qū)動器MAX 7219468 9.4.3 并行鍵盤/顯示器專用芯片8279482 9.4.4 串行鍵盤/顯示器專用芯片HD 7279A492 9.5 LED顯示接口的抗干擾措施502 9.5.1 LED靜態(tài)顯示接口的抗干擾502 9.5.2 LED動態(tài)顯示接口的抗干擾506 9.6 打印機(jī)接口與抗干擾技術(shù)508 9.6.1 并行打印機(jī)標(biāo)準(zhǔn)接口信號508 9.6.2 打印機(jī)與單片機(jī)接口電路509 9.6.3 打印機(jī)電磁干擾的防護(hù)設(shè)計(jì)510 9.6.4 提高數(shù)據(jù)傳輸可靠性的措施512 第10章 供電電源的配置與抗干擾設(shè)計(jì) 10.1 電源干擾問題概述513 10.1.1 電源干擾的類型513 10.1.2 電源干擾的耦合途徑514 10.1.3 電源的共模和差模干擾515 10.1.4 電源抗干擾的基本方法516 10.2 EMI電源濾波器517 10.2.1 實(shí)用低通電容濾波器518 10.2.2 雙繞組扼流圈的應(yīng)用518 10.3 EMI濾波器模塊519 10.3.1 濾波器模塊基礎(chǔ)知識519 10.3.2 電源濾波器模塊521 10.3.3 防雷濾波器模塊531 10.3.4 脈沖群抑制模塊532 10.4 瞬變干擾吸收器件532 10.4.1 金屬氧化物壓敏電阻(MOV)533 10.4.2 瞬變電壓抑制器(TVS)537 10.5 電源變壓器的屏蔽與隔離552 10.6 交流電源的供電抗干擾方案553 10.6.1 交流電源配電方式553 10.6.2 交流電源抗干擾綜合方案555 10.7 供電直流側(cè)抑制干擾措施555 10.7.1 整流電路的高頻濾波555 10.7.2 串聯(lián)型直流穩(wěn)壓電源配置與抗干擾556 10.7.3 集成穩(wěn)壓器使用中的保護(hù)557 10.8 開關(guān)電源干擾的抑制措施559 10.8.1 開關(guān)噪聲的分類559 10.8.2 開關(guān)電源噪聲的抑制措施560 10.9 微機(jī)用不間斷電源UPS561 10.10 采用晶閘管無觸點(diǎn)開關(guān)消除瞬態(tài)干擾設(shè)計(jì)方案564 第11章 印制電路板的抗干擾設(shè)計(jì) 11.1 印制電路板用覆銅板566 11.1.1 覆銅板材料566 11.1.2 覆銅板分類568 11.1.3 覆銅板的標(biāo)準(zhǔn)與電性能571 11.1.4 覆銅板的主要特點(diǎn)和應(yīng)用583 11.2 印制板布線設(shè)計(jì)基礎(chǔ)585 11.2.1 印制板導(dǎo)線的阻抗計(jì)算585 11.2.2 PCB布線結(jié)構(gòu)和特性阻抗計(jì)算587 11.2.3 信號在印制板上的傳播速度589 11.3 地線和電源線的布線設(shè)計(jì)590 11.3.1 降低接地阻抗的設(shè)計(jì)590 11.3.2 減小電源線阻抗的方法591 11.4 信號線的布線原則592 11.4.1 信號傳輸線的尺寸控制592 11.4.2 線間串?dāng)_控制592 11.4.3 輻射干擾的抑制593 11.4.4 反射干擾的抑制594 11.4.5 微機(jī)自動布線注意問題594 11.5 配置去耦電容的方法594 11.5.1 電源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的選用與器件布局596 11.6.1 芯片選用指南596 11.6.2 器件的布局597 11.6.3 時(shí)鐘電路的布置598 11.7 多層印制電路板599 11.7.1 多層印制板的結(jié)構(gòu)與特點(diǎn)599 11.7.2 多層印制板的布局方案600 11.7.3 20H原則605 11.8 印制電路板的安裝和板間配線606 第12章 軟件抗干擾原理與方法 12.1 概述607 12.1.1 測控系統(tǒng)軟件的基本要求607 12.1.2 軟件抗干擾一般方法607 12.2 指令冗余技術(shù)608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 軟件陷阱技術(shù)609 12.3.1 軟件陷阱609 12.3.2 軟件陷阱的安排610 12.4 故障自動恢復(fù)處理程序613 12.4.1 上電標(biāo)志設(shè)定614 12.4.2 RAM中數(shù)據(jù)冗余保護(hù)與糾錯616 12.4.3 軟件復(fù)位與中斷激活標(biāo)志617 12.4.4 程序失控后恢復(fù)運(yùn)行的方法618 12.5 數(shù)字濾波619 12.5.1 程序判斷濾波法620 12.5.2 中位值濾波法620 12.5.3 算術(shù)平均濾波法621 12.5.4 遞推平均濾波法623 12.5.5 防脈沖干擾平均值濾波法624 12.5.6 一階滯后濾波法626 12.6 干擾避開法627 12.7 開關(guān)量輸入/輸出軟件抗干擾設(shè)計(jì)629 12.7.1 開關(guān)量輸入軟件抗干擾措施629 12.7.2 開關(guān)量輸出軟件抗干擾措施629 12.8 編寫軟件的其他注意事項(xiàng)630 附錄 電磁兼容器件選購信息632
標(biāo)簽: 單片機(jī) 應(yīng)用系統(tǒng) 抗干擾技術(shù)
上傳時(shí)間: 2013-10-20
上傳用戶:xdqm
提出了以TMS320DM642為平臺開發(fā)基于DSP/BIOS的大空間網(wǎng)絡(luò)型火災(zāi)探測系統(tǒng)。該系統(tǒng)在DSP/BIOS與RF5參考框架的基礎(chǔ)上,利用TCP/IP協(xié)議棧設(shè)計(jì)了多任務(wù)線程的應(yīng)用程序,實(shí)現(xiàn)了火災(zāi)檢測算法的移植與網(wǎng)絡(luò)開發(fā)環(huán)境的構(gòu)建。最終將視頻處理結(jié)果由以太網(wǎng)傳至控制中心,同時(shí)控制中心可以利用串口通信線程對CCD攝像機(jī)進(jìn)行參數(shù)設(shè)置。
標(biāo)簽: DSP_BIOS 空間網(wǎng)絡(luò) 火災(zāi)探測 系統(tǒng)設(shè)計(jì)
上傳時(shí)間: 2013-11-03
上傳用戶:maricle
為了能實(shí)時(shí)監(jiān)控?zé)o人機(jī)的狀態(tài)和提高無人機(jī)的安全可靠性,本設(shè)計(jì)利用FPGA高速率、豐富的片上資源和靈活的設(shè)計(jì)接口,設(shè)計(jì)了一套無人機(jī)多路監(jiān)控系統(tǒng)。該監(jiān)控系統(tǒng)具備了將處于無人機(jī)不同位置的攝像機(jī)所采集的視頻信息,傳送給地面站控制設(shè)備,并在同一臺顯示器上實(shí)現(xiàn)同步顯示的功能。仿真結(jié)果表明,該系統(tǒng)可以很好的保證監(jiān)控視頻的實(shí)時(shí)性、和高清度,確保無人機(jī)完成偵查任務(wù)。
標(biāo)簽: FPGA 無人機(jī) 多路 視頻監(jiān)控
上傳時(shí)間: 2013-10-22
上傳用戶:cxl274287265
通過對LCD1602/LCD12864顯示模塊控制時(shí)序和指令集的對比分析,利用Verilog HDL描述語言完成了多功能LCD顯示控制模塊的IP核設(shè)計(jì).所設(shè)計(jì)的LCD顯示控制器具有很好的可移植性,只需通過端口的使能參數(shù)配置便可以驅(qū)動LCD1602/LCD12864模塊實(shí)現(xiàn)字符或圖形的實(shí)時(shí)顯示,并且該多功能LCD控制器的可行性也在Cyclone II系列的EP2C5T144C8 FPGA芯片上得到了很好的驗(yàn)證.
上傳時(shí)間: 2014-06-23
上傳用戶:hasan2015
伺服舵機(jī)作為基本的輸出執(zhí)行機(jī)構(gòu)廣泛應(yīng)用于 遙控航模以及人形機(jī)器人的控制中。舵機(jī)是一種位 置伺服的驅(qū)動器,其控制信號是PWM信號.,利 用占空比的變化改變舵機(jī)的位置,也可使用FPGA、 模擬電路、單片機(jī)來產(chǎn)生舵機(jī)的控制信號舊。應(yīng) 用模擬電路產(chǎn)生PWM信號,應(yīng)用的元器件較多, 會增加電路的復(fù)雜程度;若用單片機(jī)產(chǎn)生PWM信 號,當(dāng)信號路數(shù)較少時(shí)單片機(jī)能滿足要求,但當(dāng) PWM信號多于4路時(shí),由于單片機(jī)指令是順序執(zhí) 行的,會產(chǎn)生較大的延遲,從而使PWM信號波形 不穩(wěn),導(dǎo)致舵機(jī)發(fā)生顫振。
上傳時(shí)間: 2014-12-28
上傳用戶:ainimao
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1