PHILIPS單片機選型指南 ★ 80C51體系結構:如果您用過8051內核的單片機就很容易入門;★ 超高速CPU內核:18MHz的LPC900相當于108MHz的傳統(tǒng)80C51;2 ★ 豐富的片內外圍資源:WDT,UART,I C,SPI, D/A,2 E PROM, RTC,A/D,比較器,CCU,掉電檢測等;★ 內置高精度RC振蕩器:標稱頻率7.3728MHz,精度可達1%;★ 超小型TSSOP封裝(另有DIP、PLCC封裝),能最大限度節(jié)省電路板面積;★ 超低功耗:支持低速晶振,3級省電模式,典型掉電電流僅1μA;★ 在線ICP編程,僅需引出5根線(VCC, GND, RST,P0.4, P0.5);★ Flash存儲器:容量1~16KB,具有ISP、IAP功能,2 可以當作E PROM使用;★ 工業(yè)級產品,抗干擾能力強,操作電壓2.4~3.6V,管腳數8~44,I/O可兼容5V邏輯。
上傳時間: 2013-11-12
上傳用戶:rlgl123
單片機指令系統(tǒng)原理 51單片機的尋址方式 學習匯編程序設計,要先了解CPU的各種尋址法,才能有效的掌握各個命令的用途,尋址法是命令運算碼找操作數的方法。在我們學習的8051單片機中,有6種尋址方法,下面我們將逐一進行分析。 立即尋址 在這種尋址方式中,指令多是雙字節(jié)的,一般第一個字節(jié)是操作碼,第二個字節(jié)是操作數。該操作數直接參與操作,所以又稱立即數,有“#”號表示。立即數就是存放在程序存儲器中的常數,換句話說就是操作數(立即數)是包含在指令字節(jié)中的。 例如:MOV A,#3AH這條指令的指令代碼為74H、3AH,是雙字節(jié)指令,這條指令的功能是把立即數3AH送入累加器A中。MOV DPTR,#8200H在前面學單片機的專用寄存器時,我們已學過,DPTR是一個16位的寄存器,它由DPH及DPL兩個8位的寄存器組成。這條指令的意思就是把立即數的高8位(即82H)送入DPH寄存器,把立即數的低8位(即00H)送入DPL寄存器。這里也特別說明一下:在80C51單片機的指令系統(tǒng)中,僅有一條指令的操作數是16位的立即數,其功能是向地址指針DPTR傳送16位的地址,即把立即數的高8位送入DPH,低8位送入DPL。 直接尋址 直接尋址方式是指在指令中操作數直接以單元地址的形式給出,也就是在這種尋址方式中,操作數項給出的是參加運算的操作數的地址,而不是操作數。例如:MOV A,30H 這條指令中操作數就在30H單元中,也就是30H是操作數的地址,并非操作數。 在80C51單片機中,直接地址只能用來表示特殊功能寄存器、內部數據存儲器以及位地址空間,具體的說就是:1、內部數據存儲器RAM低128單元。在指令中是以直接單元地址形式給出。我們知道低128單元的地址是00H-7FH。在指令中直接以單元地址形式給出這句話的意思就是這0-127共128位的任何一位,例如0位是以00H這個單元地址形式給出、1位就是以01H單元地址給出、127位就是以7FH形式給出。2、位尋址區(qū)。20H-2FH地址單元。3、特殊功能寄存器。專用寄存器除以單元地址形式給出外,還可以以寄存器符號形式給出。例如下面我們分析的一條指令 MOV IE,#85H 前面的學習我們已知道,中斷允許寄存器IE的地址是80H,那么也就是這條指令可以以MOV IE,#85H 的形式表述,也可以MOV 80H,#85H的形式表述。 關于數據存儲器RAM的內部情況,請查看我們課程的第十二課。 直接尋址是唯一能訪問特殊功能寄存器的尋址方式! 大家來分析下面幾條指令:MOV 65H,A ;將A的內容送入內部RAM的65H單元地址中MOV A,direct ;將直接地址單元的內容送入A中MOV direct,direct;將直接地址單元的內容送直接地址單元MOV IE,#85H ;將立即數85H送入中斷允許寄存器IE 前面我們已學過,數據前面加了“#”的,表示后面的數是立即數(如#85H,就表示85H就是一個立即數),數據前面沒有加“#”號的,就表示后面的是一個地址地址(如,MOV 65H,A這條指令的65H就是一個單元地址)。 寄存器尋址 寄存器尋址的尋址范圍是:1、4個工作寄存器組共有32個通用寄存器,但在指令中只能使用當前寄存器組(工作寄存器組的選擇在前面專用寄存器的學習中,我們已知道,是由程序狀態(tài)字PSW中的RS1和RS0來確定的),因此在使用前常需要通過對PSW中的RS1、RS0位的狀態(tài)設置,來進行對當前工作寄存器組的選擇。2、部份專用寄存器。例如,累加器A、通用寄存器B、地址寄存器DPTR和進位位CY。 寄存器尋址方式是指操作數在寄存器中,因此指定了寄存器名稱就能得到操作數。例如:MOV A,R0這條指令的意思是把寄存器R0的內容傳送到累加器A中,操作數就在R0中。INC R3這條指令的意思是把寄存器R3中的內容加1 從前面的學習中我產應可以理解到,其實寄存器尋址方式就是對由PSW程序狀態(tài)字確定的工作寄存器組的R0-R7進行讀/寫操作。 寄存器間接尋址 寄存間接尋址方式是指寄存器中存放的是操作數的地址,即操作數是通過寄存器間接得到的,因此稱為寄存器間接尋址。 MCS-51單片機規(guī)定工作寄存器的R0、R1做為間接尋址寄存器。用于尋址內部或外部數據存儲器的256個單元。為什么會是256個單元呢?我們知道,R0或者R1都是一個8位的寄存器,所以它的尋址空間就是2的八次方=256。例:MOV R0,#30H ;將值30H加載到R0中 MOV A,@R0 ;把內部RAM地址30H內的值放到累加器A中 MOVX A,@R0 ;把外部RAM地址30H內的值放到累加器A中 大家想想,如果用DPTR做為間址寄存器,那么它的尋址范圍是多少呢?DPTR是一個16位的寄存器,所以它的尋址范圍就是2的十六次方=65536=64K。因用DPTR做為間址寄存器的尋址空間是64K,所以訪問片外數據存儲器時,我們通常就用DPTR做為間址寄存器。例:MOV DPTR,#1234H ;將DPTR值設為1234H(16位) MOVX A,@DPTR ;將外部RAM或I/O地址1234H內的值放到累加器A中 在執(zhí)行PUSH(壓棧)和POP(出棧)指令時,采用堆棧指針SP作寄存器間接尋址。例:PUSH 30H ;把內部RAM地址30H內的值放到堆棧區(qū)中堆棧區(qū)是由SP寄存器指定的,如果執(zhí)行上面這條命令前,SP為60H,命令執(zhí)行后會把內部RAM地址30H內的值放到RAM的61H內。 那么做為寄存器間接尋址用的寄存器主要有哪些呢?我們前面提到的有四個,R0、R1、DPTR、SP 寄存器間接尋址范圍總結:1、內部RAM低128單元。對內部RAM低128單元的間接尋址,應使用R0或R1作間址寄存器,其通用形式為@Ri(i=0或1)。 2、外部RAM 64KB。對外部RAM64KB的間接尋址,應使用@DPTR作間址尋址寄存器,其形式為:@DPTR。例如MOVX A,@DPTR;其功能是把DPTR指定的外部RAM的單元的內容送入累加器A中。外部RAM的低256單元是一個特殊的尋址區(qū),除可以用DPTR作間址寄存器尋址外,還可以用R0或R1作間址寄存器尋址。例如MOVX A,@R0;這條指令的意思是,把R0指定的外部RAM單元的內容送入累加器A。 堆棧操作指令(PUSH和POP)也應算作是寄存器間接尋址,即以堆棧指針SP作間址寄存器的間接尋址方式。 寄存器間接尋址方式不可以訪問特殊功能寄存器!! 寄存器間接尋址也須以寄存器符號的形式表示,為了區(qū)別寄存器尋址我寄存器間接尋址的區(qū)別,在寄存器間接尋址方式式中,寄存器的名稱前面加前綴標志“@”。 基址寄存器加變址寄存器的變址尋址 這種尋址方式以程序計數器PC或DPTR為基址寄存器,累加器A為變址寄存器,變址尋址時,把兩者的內容相加,所得到的結果作為操作數的地址。這種方式常用于訪問程序存儲器ROM中的數據表格,即查表操作。變址尋址只能讀出程序內存入的值,而不能寫入,也就是說變址尋址這種方式只能對程序存儲器進行尋址,或者說它是專門針對程序存儲器的尋址方式。例:MOVC A,@A+DPTR這條指令的功能是把DPTR和A的內容相加,再把所得到的程序存儲器地址單元的內容送A假若指令執(zhí)行前A=54H,DPTR=3F21H,則這條指令變址尋址形成的操作數地址就是54H+3F21H=3F75H。如果3F75H單元中的內容是7FH,則執(zhí)行這條指令后,累加器A中的內容就是7FH。 變址尋址的指令只有三條,分別如下:JMP @A+DPTRMOVC A,@A+DPTRMOVC A,@A+PC 第一條指令JMP @A+DPTR這是一條無條件轉移指令,這條指令的意思就是DPTR加上累加器A的內容做為一個16位的地址,執(zhí)行JMP這條指令是,程序就轉移到A+DPTR指定的地址去執(zhí)行。 第二、三條指令MOVC A,@A+DPTR和MOVC A,@A+PC指令這兩條指令的通常用于查表操作,功能完全一樣,但使用起來卻有一定的差別,現(xiàn)詳細說明如下。我們知道,PC是程序指針,是十六位的。DPTR是一個16位的數據指針寄存器,按理,它們的尋址范圍都應是64K。我們在學習特殊功能寄存器時已知道,程序計數器PC是始終跟蹤著程序的執(zhí)行的。也就是說,PC的值是隨程序的執(zhí)行情況自動改變的,我們不可以隨便的給PC賦值。而DPTR是一個數據指針,我們就可以給空上數據指針DPTR進行賦值。我們再看指令MOVC A,@A+PC這條指令的意思是將PC的值與累加器A的值相加作為一個地址,而PC是固定的,累加器A是一個8位的寄存器,它的尋址范圍是256個地址單元。講到這里,大家應可明白,MOVC A,@A+PC這條指令的尋址范圍其實就是只能在當前指令下256個地址單元。所在,這在我們實際應用中,可能就會有一個問題,如果我們需要查詢的數據表在256個地址單元之內,則可以用MOVC A,@A+PC這條指令進行查表操作,如果超過了256個單元,則不能用這條指令進行查表操作。剛才我們已說到,DPTR是一個數據指針,這個數據指針我們可以給它賦值操作的。通過賦值操作。我們可以使MOVC A,@A+DPTR這條指令的尋址范圍達到64K。這就是這兩條指令在實際應用當中要注意的問題。 變址尋址方式是MCS-51單片機所獨有的一種尋址方式。 位尋址 80C51單片機有位處理功能,可以對數據位進行操作,因此就有相應的位尋址方式。所謂位尋址,就是對內部RAM或可位尋址的特殊功能寄存器SFR內的某個位,直接加以置位為1或復位為0。 位尋址的范圍,也就是哪些部份可以進行位尋址: 1、我們在第十二課學習51單片機的存儲器結構時,我們已知道在單片機的內部數據存儲器RAM的低128單元中有一個區(qū)域叫位尋址區(qū)。它的單元地址是20H-2FH。共有16個單元,一個單元是8位,所以位尋址區(qū)共有128位。這128位都單獨有一個位地址,其位地址的名字就是00H-7FH。這里就有一個比較麻煩的問題需要大家理解清楚了。我們在前面的學習中00H、01H。。。。7FH等等,所表示的都是一個字節(jié)(或者叫單元地址),而在這里,這些數據都變成了位地址。我們在指令中,或者在程序中如何來區(qū)分它是一個單元地址還是一個位地址呢?這個問題,也就是我們現(xiàn)在正在研究的位尋址的一個重要問題。其實,區(qū)分這些數據是位地址還是單元地址,我們都有相應的指令形式的。這個問題我們在后面的指令系統(tǒng)學習中再加以論述。 2、對專用寄存器位尋址。這里要說明一下,不是所有的專用寄存器都可以位尋址的。具體哪些專用寄存器可以哪些專用寄存器不可以,請大家回頭去看看我們前面關于專用寄存器的相關文章。一般來說,地址單元可以被8整除的專用寄存器,通常都可以進行位尋址,當然并不是全部,大家在應用當中應引起注意。 專用寄存器的位尋址表示方法: 下面我們以程序狀態(tài)字PSW來進行說明 D7 D6 D5 D4 D3 D2 D1 D0 CY AC F0 RS1 RS0 OV P 1、直接使用位地址表示:看上表,PSW的第五位地址是D5,所以可以表示為D5H MOV C,D5H 2、位名稱表示:表示該位的名稱,例如PSW的位5是F0,所以可以用F0表示 MOV C,F(xiàn)0 3、單元(字節(jié))地址加位表示:D0H單元位5,表示為DOH.5 MOV C,D0H.5 4、專用寄存器符號加位表示:例如PSW.5 MOV C,PSW.5 這四種方法實現(xiàn)的功能都是相同的,只是表述的方式不同而已。 例題: 1. 說明下列指令中源操作數采用的尋址方式。 MOV R5,R7 答案:寄存器尋址方式 MOV A,55H 直接尋址方式 MOV A,#55H 立即尋址方式 JMP @A+DPTR 變址尋址方式 MOV 30H,C 位尋址方式 MOV A,@R0 間接尋址方式 MOVX A,@R0 間接尋址方式 改錯題 請判斷下列的MCS-51單片機指令的書寫格式是否有錯,若有,請說明錯誤原因。 MOV R0,@R3 答案:間址寄存器不能使用R2~R7。 MOVC A,@R0+DPTR 變址尋址方式中的間址寄存器不可使用R0,只可使用A。 ADD R0,R1 運算指令中目的操作數必須為累加器A,不可為R0。 MUL AR0 乘法指令中的乘數應在B寄存器中,即乘法指令只可使用AB寄存器組合。
標簽: 單片機指令 系統(tǒng)原理
上傳時間: 2013-11-11
上傳用戶:caozhizhi
IAP在應用中編程及其應用 LPC2300 系列處理器在出廠時,由廠家在片內固化了一段Boot 代碼。Boot 裝載程序控制芯片復位后的初始化操作,并提供對Flash 編程的方法。Boot 程序可以對芯片進行擦除、編程。
上傳時間: 2013-11-04
上傳用戶:libinxny
基于HT49的MCU控制HT93LC46的讀寫 HT93LC46EEPROM 是Holtek 制造的1K 位系列的EEPROM(電子可擦除只讀存儲器),一般它用于微控制器的固定數據的存儲。在本文中,我們將以Holtek 公司8 位微控制器HT49 系列為例,介紹該芯片常用的操作功能代碼。用戶只需把代碼加到程序中,并且在使用HT93LC46 之前將引腳CS/SK/DI/DO 連接即可。
上傳時間: 2013-11-02
上傳用戶:笨小孩
NEC78K0/KF1用戶手冊 8位單片微控制器 本手冊適用于那些希望了解78K0/KF1產品功能,并設計開發(fā)相關應用系統(tǒng)和程序的用戶。主要產品如下。78K0/KF1: μPD780143,780144,780146,780148,78F0148,780143(A),780144(A),780146(A),780148(A),78F0148(A),780143(A1),780144(A1),780146(A1),780148(A1),78F0148(A1),780143(A2),780144(A2),780146(A2)和780148(A2)
上傳時間: 2014-12-27
上傳用戶:魚哥哥你好
at91rm9200啟動過程教程 系統(tǒng)上電,檢測BMS,選擇系統(tǒng)的啟動方式,如果BMS為高電平,則系統(tǒng)從片內ROM啟動。AT91RM9200的ROM上電后被映射到了0x0和0x100000處,在這兩個地址處都可以訪問到ROM。由于9200的ROM中固化了一個BOOTLOAER程序。所以PC從0X0處開始執(zhí)行這個BOOTLOAER(準確的說應該是一級BOOTLOADER)。這個BOOTLOER依次完成以下步驟: 1、PLL SETUP,設置PLLB產生48M時鐘頻率提供給USB DEVICE。同時DEBUG USART也被初始化為48M的時鐘頻率; 2、相應模式下的堆棧設置; 3、檢測主時鐘源(Main oscillator); 4、中斷控制器(AIC)的設置; 5、C 變量的初始化; 6、跳到主函數。 完成以上步驟后,我們可以認為BOOT過程結束,接下來的就是LOADER的過程,或者也可以認為是裝載二級BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、連接在外部總線上的8位并行FLASH的順序依次來找合法的BOOT程序。所謂合法的指的是在這些存儲設備的開始地址處連續(xù)的存放的32個字節(jié),也就是8條指令必須是跳轉指令或者裝載PC的指令,其實這樣規(guī)定就是把這8條指令當作是異常向量表來處理。必須注意的是第6條指令要包含將要裝載的映像的大小。關于如何計算和寫這條指令可以參考用戶手冊。一旦合法的映像找到之后,則BOOT程序會把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超過16K-3K的大小。當BOOT程序完成了把合法的映像搬到SRAM的任務以后,接下來就進行存儲器的REMAP,經過REMAP之后,SRAM從映設前的0X200000地址處被映設到了0X0地址并且程序從0X0處開始執(zhí)行。而ROM這時只能在0X100000這個地址處看到了。至此9200就算完成了一種形式的啟動過程。如果BOOT程序在以上所列的幾種存儲設備中找到合法的映像,則自動初始化DEBUG USART口和USB DEVICE口以準備從外部載入映像。對DEBUG口的初始化包括設置參數115200 8 N 1以及運行XMODEM協(xié)議。對USB DEVICE進行初始化以及運行DFU協(xié)議。現(xiàn)在用戶可以從外部(假定為PC平臺)載入你的映像了。在PC平臺下,以WIN2000為例,你可以用超級終端來完成這個功能,但是還是要注意你的映像的大小不能超過13K。一旦正確從外部裝載了映像,接下來的過程就是和前面一樣重映設然后執(zhí)行映像了。我們上面講了BMS為高電平,AT91RM9200選擇從片內的ROM啟動的一個過程。如果BMS為低電平,則AT91RM9200會從片外的FLASH啟動,這時片外的FLASH的起始地址就是0X0了,接下來的過程和片內啟動的過程是一樣的,只不過這時就需要自己寫啟動代碼了,至于怎么寫,大致的內容和ROM的BOOT差不多,不同的硬件設計可能有不一樣的地方,但基本的都是一樣的。由于片外FLASH可以設計的大,所以這里編寫的BOOTLOADER可以一步到位,也就是說不用像片內啟動可能需要BOOT好幾級了,目前AT91RM9200上使用較多的bootloer是u-boot,這是一個開放源代碼的軟件,用戶可以自由下載并根據自己的應用配置。總的說來,筆者以為AT91RM9200的啟動過程比較簡單,ATMEL的服務也不錯,不但提供了片內啟動的功能,還提供了UBOOT可供下載。筆者寫了一個BOOTLODER從片外的FLASHA啟動,效果還可以。 uboot結構與使用uboot是一個龐大的公開源碼的軟件。他支持一些系列的arm體系,包含常見的外設的驅動,是一個功能強大的板極支持包。其代碼可以 http://sourceforge.net/projects/u-boot下載 在9200上,為了啟動uboot,還有兩個boot軟件包,分別是loader和boot。分別完成從sram和flash中的一級boot。其源碼可以從atmel的官方網站下載。 我們知道,當9200系統(tǒng)上電后,如果bms為高電平,則系統(tǒng)從片內rom啟動,這時rom中固化的boot程序初始化了debug口并向其發(fā)送'c',這時我們打開超級終端會看到ccccc...。這說明系統(tǒng)已經啟動,同時xmodem協(xié)議已經啟動,用戶可以通過超級終端下載用戶的bootloader。作為第一步,我們下載loader.bin.loader.bin將被下載到片內的sram中。這個loder完成的功能主要是初始化時鐘,sdram和xmodem協(xié)議,為下載和啟動uboot做準備。當下載了loader.bin后,超級終端會繼續(xù)打印:ccccc....。這時我們就可以下在uboot了。uboot將被下載到sdram中的一個地址后并把pc指針調到此處開始執(zhí)行uboot。接著我們就可以在終端上看到uboot的shell啟動了,提示符uboot>,用戶可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了對內存、flash、網絡、系統(tǒng)啟動等一些命令。 如果系統(tǒng)上電時bms為低電平,則系統(tǒng)從片外的flash啟動。為了從片外的flash啟動uboot,我們必須把boot.bin放到0x0地址出,使得從flash啟動后首先執(zhí)行boot.bin,而要少些boot.bin,就要先完成上面我們講的那些步驟,首先開始從片內rom啟動uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz燒寫到flash中的目的,假如我們已經啟動了uboot,可以這樣操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系統(tǒng)復位,就可以看到系統(tǒng)先啟動boot,然后解壓縮uboot.gz,然后啟動uboot。注意,這里uboot必須壓縮成.gz文件,否則會出錯。 怎么編譯這三個源碼包呢,首先要建立一個arm的交叉編譯環(huán)境,關于如何建立,此處不予說明。建立好了以后,分別解壓源碼包,然后修改Makefile中的編譯器項目,正確填寫你的編譯器的所在路徑。 對loader和boot,直接make。對uboot,第一步:make_at91rm9200dk,第二步:make。這樣就會在當前目錄下分別生成*.bin文件,對于uboot.bin,我們還要壓縮成.gz文件。 也許有的人對loader和boot搞不清楚為什么要兩個,有什么區(qū)別嗎?首先有區(qū)別,boot主要完成從flash中啟動uboot的功能,他要對uboot的壓縮文件進行解壓,除此之外,他和loader并無大的區(qū)別,你可以把boot理解為在loader的基礎上加入了解壓縮.gz的功能而已。所以這兩個并無多大的本質不同,只是他們的使命不同而已。 特別說名的是這三個軟件包都是開放源碼的,所以用戶可以根據自己的系統(tǒng)的情況修改和配置以及裁減,打造屬于自己系統(tǒng)的bootloder。
上傳時間: 2013-10-27
上傳用戶:wsf950131
Keil C51使用詳解Keil C51 是美國Keil Software 公司出品的51 系列兼容單片機C 語言軟件開發(fā)系統(tǒng),與匯編相比,C 語言在功能上、結構性、可讀性、可維護性上有明顯的優(yōu)勢,因而易學易用。用過匯編語言后再使用C 來開發(fā),體會更加深刻。Keil C51 軟件提供豐富的庫函數和功能強大的集成開發(fā)調試工具,全Windows界面。另外重要的一點,只要看一下編譯后生成的匯編代碼,就能體會到Keil C51生成的目標代碼效率非常之高,多數語句生成的匯編代碼很緊湊,容易理解。在開發(fā)大型軟件時更能體現(xiàn)高級語言的優(yōu)勢。下面詳細介紹 Keil C51 開發(fā)系統(tǒng)各部分功能和使用。第二節(jié) Keil C51 單片機軟件開發(fā)系統(tǒng)的整體結構C51 工具包的整體結構,如圖(1)所示,其中uVision 與Ishell 分別是C51 forWindows 和for Dos 的集成開發(fā)環(huán)境(IDE),可以完成編輯、編譯、連接、調試、仿真等整個開發(fā)流程。開發(fā)人員可用IDE 本身或其它編輯器編輯C 或匯編源文件。然后分別由C51 及A51 編譯器編譯生成目標文件(.OBJ)。目標文件可由LIB51 創(chuàng)建生成庫文件,也可以與庫文件一起經L51 連接定位生成絕對目標文件(.ABS)。ABS 文件由OH51 轉換成標準的Hex 文件,以供調試器dScope51 或tScope51 使用進行源代碼級調試,也可由仿真器使用直接對目標板進行調試,也可以直接寫入程序存貯器如EPROM 中。圖(1) C51 工具包整體結構圖第三節(jié) Keil C51 工具包的安裝81. C51 for Dos在 Windows 下直接運行軟件包中DOS\C51DOS.exe 然后選擇安裝目錄即可。完畢后欲使系統(tǒng)正常工作須進行以下操作(設C:\C51 為安裝目錄):修改 Autoexec.bat,加入path=C:\C51\BinSet C51LIB=C:\C51\LIBSet C51INC=C:\C51\INC然后運行Autoexec.bat2. C51 for Windows 的安裝及注意事項:在 Windows 下運行軟件包中WIN\Setup.exe,最好選擇安裝目錄與C51 for Dos相同,這樣設置最簡單(設安裝于C:\C51 目錄下)。然后將軟件包中crack 目錄中的文件拷入C:\C51\Bin 目錄下。第四節(jié) Keil C51 工具包各部分功能及使用簡介1. C51 與A51(1) C51C51 是C 語言編譯器,其使用方法為:C51 sourcefile[編譯控制指令]或者 C51 @ commandfile其中 sourcefile 為C 源文件(.C)。大量的編譯控制指令完成C51 編譯器的全部功能。包控C51 輸出文件C.LST,.OBJ,.I 和.SRC 文件的控制。源文件(.C)的控制等,詳見第五部分的具體介紹。而 Commandfile 為一個連接控制文件其內容包括:.C 源文件及各編譯控制指令,它沒有固定的名字,開發(fā)人員可根據自己的習慣指定,它適于用控制指令較多的場合。(2) A51A51 是匯編語言編譯器,使用方法為:9A51 sourcefile[編譯控制指令]或 A51 @ commandfile其中sourcefile 為匯編源文件(.asm或.a51),而編譯控制指令的使用與其它匯編如ASM語言類似,可參考其他匯編語言材料。Commandfile 同C51 中的Commandfile 類似,它使A51 使用和修改方便。2. L51 和BL51(1) L51L51 是Keil C51 軟件包提供的連接/定位器,其功能是將編譯生成的OBJ 文件與庫文件連接定位生成絕對目標文件(.ABS),其使用方法為:L51 目標文件列表[庫文件列表] [to outputfile] [連接控制指令]或 L51 @Commandfile源程序的多個模塊分別經 C51 與A51 編譯后生成多個OBJ 文件,連接時,這些文件全列于目標文件列表中,作為輸入文件,如果還需與庫文件(.LiB)相連接,則庫文件也必須列在其后。outputfile 為輸文件名,缺少時為第一模塊名,后綴為.ABS。連接控制指令提供了連接定位時的所有控制功能。Commandfile 為連接控制文件,其具體內容是包括了目標文件列表,庫文件列表及輸出文件、連接控制命令,以取代第一種繁瑣的格式,由于目標模塊庫文件大多不止1 個,因而第2 種方法較多見,這個文件名字也可由使用者隨意指定。(2) Bl51BL51 也是C51 軟件包的連接/定位器,其具有L51 的所有功能,此外它還具有以下3 點特別之處:a. 可以連接定位大于64kBytes 的程序。b. 具有代碼域及域切換功能(CodeBanking & Bank Switching)c. 可用于RTX51 操作系統(tǒng)RTX51 是一個實時多任務操作系統(tǒng),它改變了傳統(tǒng)的編程模式,甚至不必用main( )函數,單片機系統(tǒng)軟件向RTOS 發(fā)展是一種趨勢,這種趨勢對于186 和38610及68K 系列CPU 更為明顯和必須,對8051 因CPU 較為簡單,程序結構等都不太復雜,RTX51 作用顯得不太突出,其專業(yè)版軟件PK51 軟件包甚至不包括RTX51Full,而只有一個RTX51TINY 版本的RTOS。RTX51 TINY 適用于無外部RAM 的單片機系統(tǒng),因而可用面很窄,在本文中不作介紹。Bank switching 技術因使用很少也不作介紹。3. DScope51,Tscope51 及Monitor51(1) dScope51dScope51 是一個源級調試器和模擬器,它可以調試由C51 編譯器、A51 匯編器、PL/M-51 編譯器及ASM-51 匯編器產生的程序。它不需目標板(for windows 也可通過mon51 接目標板),只能進行軟件模擬,但其功能強大,可模擬CPU 及其外圍器件,如內部串口,外部I/O 及定時器等,能對嵌入式軟件功能進行有效測試。
上傳時間: 2013-11-01
上傳用戶:zhouxuepeng1
使用 LPC2138 的RTC 功能時,RTC 選擇外部晶振且使能操作和利用外設功率控制寄存器關閉RTC 的操作有一定的次序,否則會導致RTC 正常工作、RTC 工作異常。
上傳時間: 2013-10-13
上傳用戶:彭玖華
arm指令集(1) ARM跳轉指令可以從當前指令向前或向后的32MB地址空間跳轉。這類跳轉指令有以下4種。 (1)B 跳4專指令 B〔條件) (地址) B指令屬于ARM指令集,是最簡單的分支指令。一旦遇到一個B指令,ARM處理器將立即跳轉到給定的地址,從那里繼續(xù)執(zhí)行。注意:存儲在分支指令中的實際值是相對當前R15的值的一個偏移量,而不是一個絕對地址。它的值由匯編器來計算,是24位有符號數,左移兩位后有符號擴展為32位,表示的有效偏移位為26位(+/- 32 MB)。 (2)BL 帶返回的跳轉指令 BI,〔條件) (地址) BL指令也屬于ARM指令集,是另一個分支指令。就在分支之前,在寄存器R14中裝載上R15的內容,因此可以重新裝載R14到R15中來返回到這個分支之后的那個指令處執(zhí)行,它是子例程的一個基本但強力的實現(xiàn)。 (3)BLX 帶返回和狀態(tài)切換的跳轉指令 BLX <地址> BLX指令有兩種格式,第1種格式的BLX指令記作BLX(1)。BLX(1)從ARM指令集跳轉到指令中指定的目標地址,并將程序狀態(tài)切換到Thumb狀態(tài),該指令同時將PC寄存器的內容復制到LR寄存器中。 BLX(1)指令屬于無條件執(zhí)行的指令。 第2種格式的BLX指令記作BLX(2)。BLX(2)指令從ARM指令集跳轉到指令中指定的目標地址,目標地址的指令可以是ARM指令,也可以是Thumb指令。目標地址放在指令中的寄存器<dest>中,該地址的bit[0]值為0,目標地址處的指令類型由CPSR中的T位決定。該指令同時將PC寄存器的內容復制到LR寄存器中。 (4)BX 帶狀態(tài)切換的跳轉指令 BX(條件) (dest) BX指令跳轉到指令中指定的目標地址,目標地址處的指令可以是ARM指令,也可以是Thumb指令。目標地址值為指令的值和0xFl·FFFFFF做“與”操作的結果,目標地址處的指令類型由寄存器決定。
上傳時間: 2014-12-27
上傳用戶:laomv123
1.1 微型計算機的組成及工作原理1.1.1 微型計算機中的基本概念1. 微處理器2. 微型計算機 (1)單片微處理機 (2)通用微型計算機3. 微型計算機系統(tǒng)1.1.2 微機基本結構 微型計算機的基本組成如圖1.1所示,它由中央處理器(CPU)、存儲器(Memory)、輸入輸出接口(I/O接口)和系統(tǒng)總線(BUS)構成。 1.1.3 微型計算機的基本工作過程 微型計算機的基本工作過程是執(zhí)行程序的過程,也就是CPU自動從程序存放的第1個存儲單元起,逐步取出指令、分析指令,并根據指令規(guī)定的操作類型和操作對象,執(zhí)行指令規(guī)定的相關操作。如此重復,周而復始,直至執(zhí)行完程序的所有指令,從而實現(xiàn)程序的基本功能,這就是微型計算機的基本工作原理。 1.2 典型單片機產品簡介1.2.1 MCS-51單片機系列 MCS-51可分為兩個子系列和4種類型,如表1-1所示。按資源的配置數量,MCS-51系列分為51和52兩個子系列,其中51子系列是基本型,而52子系列屬于增強型。表1-1 MCS-51系列單片機分類
上傳時間: 2013-11-07
上傳用戶:debuchangshi