多路電壓采集系統(tǒng)一、實驗?zāi)康模保煜た删幊绦酒珹DC0809,8253的工作過程,掌握它們的編程方法。2.加深對所學(xué)知識的理解并學(xué)會應(yīng)用所學(xué)的知識,達(dá)到在應(yīng)用中掌握知識的目的。 二、實驗內(nèi)容與要求1.基本要求通過一個A/D轉(zhuǎn)換器循環(huán)采樣4路模擬電壓,每隔一定時間去采樣一次,一次按順序采樣4路信號。A/D轉(zhuǎn)換器芯片AD0809將采樣到的模擬信號轉(zhuǎn)換為數(shù)字信號,轉(zhuǎn)換完成后,CPU讀取數(shù)據(jù)轉(zhuǎn)換結(jié)果,并將結(jié)果送入外設(shè)即CRT/LED顯示,顯示包括電壓路數(shù)和數(shù)據(jù)值。2. 提高要求 (1) 可以實現(xiàn)循環(huán)采集和選擇采集2種方式。(2)在CRT上繪制電壓變化曲線。 三、實驗報告要求 1.設(shè)計目的和內(nèi)容 2.總體設(shè)計 3.硬件設(shè)計:原理圖(接線圖)及簡要說明 4.軟件設(shè)計框圖及程序清單5.設(shè)計結(jié)果和體會(包括遇到的問題及解決的方法) 四、總體設(shè)計設(shè)計思路如下:1) 4路模擬電壓信號通過4個電位器提供0-5V的電壓信號。2) 選擇ADC0809芯片作為A/D轉(zhuǎn)換器,4路輸入信號分別接到ADC0809的IN0—IN4通道,每隔一定的時間采樣一次,采完一路采集下一路,4路電壓循環(huán)采集。3) 利用3個LED數(shù)碼管顯示數(shù)據(jù),1個數(shù)碼管用來顯示輸入電壓路數(shù),3個數(shù)碼管用來顯示電壓采樣值。4) 延時由8253定時/計數(shù)器來實現(xiàn)。 五、硬件電路設(shè)計根據(jù)設(shè)計思路,硬件主要利用了微機(jī)實驗平臺上的ADC0809模數(shù)轉(zhuǎn)換器、8253定時/計數(shù)器以及LED顯示輸出等模塊。電路原理圖如下:1.基本接口實驗板部分1) 電位計模塊,4個電位計輸出4路1-5V的電壓信號。2) ADC0809模數(shù)轉(zhuǎn)換器,將4路電壓信號接到IN0-IN3,ADD_A、ADD_B、ADD_C分別接A0、A1、A2,CS_AD接CS0時,4個采樣通道對應(yīng)的地址分別為280H—283H。3) 延時模塊,8253和8255組成延時電路。8255的PA0接到8253的OUT0,程序中查詢計數(shù)是否結(jié)束。硬件電路圖如圖1所示。 圖1 基本實驗板上的電路圖實驗板上的LED顯示部分實驗板上主要用到了LED數(shù)碼管顯示電路,插孔CS1用于數(shù)碼管段碼的輸出選通,插孔CS2用于數(shù)碼管位選信號的輸出選通。電路圖如圖2所示。
上傳時間: 2013-11-06
上傳用戶:sunchao524
單片機(jī)應(yīng)用系統(tǒng)抗干擾技術(shù):第1章 電磁干擾控制基礎(chǔ). 1.1 電磁干擾的基本概念1 1.1.1 噪聲與干擾1 1.1.2 電磁干擾的形成因素2 1.1.3 干擾的分類2 1.2 電磁兼容性3 1.2.1 電磁兼容性定義3 1.2.2 電磁兼容性設(shè)計3 1.2.3 電磁兼容性常用術(shù)語4 1.2.4 電磁兼容性標(biāo)準(zhǔn)6 1.3 差模干擾和共模干擾8 1.3.1 差模干擾8 1.3.2 共模干擾9 1.4 電磁耦合的等效模型9 1.4.1 集中參數(shù)模型9 1.4.2 分布參數(shù)模型10 1.4.3 電磁波輻射模型11 1.5 電磁干擾的耦合途徑14 1.5.1 傳導(dǎo)耦合14 1.5.2 感應(yīng)耦合(近場耦合)15 .1.5.3 電磁輻射耦合(遠(yuǎn)場耦合)15 1.6 單片機(jī)應(yīng)用系統(tǒng)電磁干擾控制的一般方法16 第2章 數(shù)字信號耦合與傳輸機(jī)理 2.1 數(shù)字信號與電磁干擾18 2.1.1 數(shù)字信號的開關(guān)速度與頻譜18 2.1.2 開關(guān)暫態(tài)電源尖峰電流噪聲22 2.1.3 開關(guān)暫態(tài)接地反沖噪聲24 2.1.4 高速數(shù)字電路的EMI特點25 2.2 導(dǎo)線阻抗與線間耦合27 2.2.1 導(dǎo)體交直流電阻的計算27 2.2.2 導(dǎo)體電感量的計算29 2.2.3 導(dǎo)體電容量的計算31 2.2.4 電感耦合分析32 2.2.5 電容耦合分析35 2.3 信號的長線傳輸36 2.3.1 長線傳輸過程的數(shù)學(xué)描述36 2.3.2 均勻傳輸線特性40 2.3.3 傳輸線特性阻抗計算42 2.3.4 傳輸線特性阻抗的重復(fù)性與阻抗匹配44 2.4 數(shù)字信號傳輸過程中的畸變45 2.4.1 信號傳輸?shù)娜肷浠?5 2.4.2 信號傳輸?shù)姆瓷浠?6 2.5 信號傳輸畸變的抑制措施49 2.5.1 最大傳輸線長度的計算49 2.5.2 端點的阻抗匹配50 2.6 數(shù)字信號的輻射52 2.6.1 差模輻射52 2.6.2 共模輻射55 2.6.3 差模和共模輻射比較57 第3章 常用元件的可靠性能與選擇 3.1 元件的選擇與降額設(shè)計59 3.1.1 元件的選擇準(zhǔn)則59 3.1.2 元件的降額設(shè)計59 3.2 電阻器60 3.2.1 電阻器的等效電路60 3.2.2 電阻器的內(nèi)部噪聲60 3.2.3 電阻器的溫度特性61 3.2.4 電阻器的分類與主要參數(shù)62 3.2.5 電阻器的正確選用66 3.3 電容器67 3.3.1 電容器的等效電路67 3.3.2 電容器的種類與型號68 3.3.3 電容器的標(biāo)志方法70 3.3.4 電容器引腳的電感量71 3.3.5 電容器的正確選用71 3.3.6 電容器使用注意事項73 3.4 電感器73 3.4.1 電感器的等效電路74 3.4.2 電感器使用的注意事項74 3.5 數(shù)字集成電路的抗干擾性能75 3.5.1 噪聲容限與抗干擾能力75 3.5.2 施密特集成電路的噪聲容限77 3.5.3 TTL數(shù)字集成電路的抗干擾性能78 3.5.4 CMOS數(shù)字集成電路的抗干擾性能79 3.5.5 CMOS電路使用中注意事項80 3.5.6 集成門電路系列型號81 3.6 高速CMOS 54/74HC系列接口設(shè)計83 3.6.1 54/74HC 系列芯片特點83 3.6.2 74HC與TTL接口85 3.6.3 74HC與單片機(jī)接口85 3.7 元器件的裝配工藝對可靠性的影響86 第4章 電磁干擾硬件控制技術(shù) 4.1 屏蔽技術(shù)88 4.1.1 電場屏蔽88 4.1.2 磁場屏蔽89 4.1.3 電磁場屏蔽91 4.1.4 屏蔽損耗的計算92 4.1.5 屏蔽體屏蔽效能的計算99 4.1.6 屏蔽箱的設(shè)計100 4.1.7 電磁泄漏的抑制措施102 4.1.8 電纜屏蔽層的屏蔽原理108 4.1.9 屏蔽與接地113 4.1.10 屏蔽設(shè)計要點113 4.2 接地技術(shù)114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系統(tǒng)的布局119 4.2.5 接地裝置和接地電阻120 4.2.6 地環(huán)路問題121 4.2.7 浮地方式122 4.2.8 電纜屏蔽層接地123 4.3 濾波技術(shù)126 4.3.1 濾波器概述127 4.3.2 無源濾波器130 4.3.3 有源濾波器138 4.3.4 鐵氧體抗干擾磁珠143 4.3.5 貫通濾波器146 4.3.6 電纜線濾波連接器149 4.3.7 PCB板濾波器件154 4.4 隔離技術(shù)155 4.4.1 光電隔離156 4.4.2 繼電器隔離160 4.4.3 變壓器隔離 161 4.4.4 布線隔離161 4.4.5 共模扼流圈162 4.5 電路平衡結(jié)構(gòu)164 4.5.1 雙絞線在平衡電路中的使用164 4.5.2 同軸電纜的平衡結(jié)構(gòu)165 4.5.3 差分放大器165 4.6 雙絞線的抗干擾原理及應(yīng)用166 4.6.1 雙絞線的抗干擾原理166 4.6.2 雙絞線的應(yīng)用168 4.7 信號線間的串?dāng)_及抑制169 4.7.1 線間串?dāng)_分析169 4.7.2 線間串?dāng)_的抑制173 4.8 信號線的選擇與敷設(shè)174 4.8.1 信號線型式的選擇174 4.8.2 信號線截面的選擇175 4.8.3 單股導(dǎo)線的阻抗分析175 4.8.4 信號線的敷設(shè)176 4.9 漏電干擾的防止措施177 4.10 抑制數(shù)字信號噪聲常用硬件措施177 4.10.1 數(shù)字信號負(fù)傳輸方式178 4.10.2 提高數(shù)字信號的電壓等級178 4.10.3 數(shù)字輸入信號的RC阻容濾波179 4.10.4 提高輸入端的門限電壓181 4.10.5 輸入開關(guān)觸點抖動干擾的抑制方法181 4.10.6 提高器件的驅(qū)動能力184 4.11 靜電放電干擾及其抑制184 第5章 主機(jī)單元配置與抗干擾設(shè)計 5.1 單片機(jī)主機(jī)單元組成特點186 5.1.1 80C51最小應(yīng)用系統(tǒng)186 5.1.2 低功耗單片機(jī)最小應(yīng)用系統(tǒng)187 5.2 總線的可靠性設(shè)計191 5.2.1 總線驅(qū)動器191 5.2.2 總線的負(fù)載平衡192 5.2.3 總線上拉電阻的配置192 5.3 芯片配置與抗干擾193 5.3.1去耦電容配置194 5.3.2 數(shù)字輸入端的噪聲抑制194 5.3.3 數(shù)字電路不用端的處理195 5.3.4 存儲器的布線196 5.4 譯碼電路的可靠性分析197 5.4.1 過渡干擾與譯碼選通197 5.4.2 譯碼方式與抗干擾200 5.5 時鐘電路配置200 5.6 復(fù)位電路設(shè)計201 5.6.1 復(fù)位電路RC參數(shù)的選擇201 5.6.2 復(fù)位電路的可靠性與抗干擾分析202 5.6.3 I/O接口芯片的延時復(fù)位205 5.7 單片機(jī)系統(tǒng)的中斷保護(hù)問題205 5.7.1 80C51單片機(jī)的中斷機(jī)構(gòu)205 5.7.2 常用的幾種中斷保護(hù)措施205 5.8 RAM數(shù)據(jù)掉電保護(hù)207 5.8.1 片內(nèi)RAM數(shù)據(jù)保護(hù)207 5.8.2 利用雙片選的外RAM數(shù)據(jù)保護(hù)207 5.8.3 利用DS1210實現(xiàn)外RAM數(shù)據(jù)保護(hù)208 5.8.4 2 KB非易失性隨機(jī)存儲器DS1220AB/AD211 5.9 看門狗技術(shù)215 5.9.1 由單穩(wěn)態(tài)電路實現(xiàn)看門狗電路216 5.9.2 利用單片機(jī)片內(nèi)定時器實現(xiàn)軟件看門狗217 5.9.3 軟硬件結(jié)合的看門狗技術(shù)219 5.9.4 單片機(jī)內(nèi)配置看門狗電路221 5.10 微處理器監(jiān)控器223 5.10.1 微處理器監(jiān)控器MAX703~709/813L223 5.10.2 微處理器監(jiān)控器MAX791227 5.10.3 微處理器監(jiān)控器MAX807231 5.10.4 微處理器監(jiān)控器MAX690A/MAX692A234 5.10.5 微處理器監(jiān)控器MAX691A/MAX693A238 5.10.6 帶備份電池的微處理器監(jiān)控器MAX1691242 5.11 串行E2PROM X25045245 第6章 測量單元配置與抗干擾設(shè)計 6.1 概述255 6.2 模擬信號放大器256 6.2.1 集成運算放大器256 6.2.2 測量放大器組成原理260 6.2.3 單片集成測量放大器AD521263 6.2.4 單片集成測量放大器AD522265 6.2.5 單片集成測量放大器AD526266 6.2.6 單片集成測量放大器AD620270 6.2.7 單片集成測量放大器AD623274 6.2.8 單片集成測量放大器AD624276 6.2.9 單片集成測量放大器AD625278 6.2.10 單片集成測量放大器AD626281 6.3 電壓/電流變換器(V/I)283 6.3.1 V/I變換電路..283 6.3.2 集成V/I變換器XTR101284 6.3.3 集成V/I變換器XTR110289 6.3.4 集成V/I變換器AD693292 6.3.5 集成V/I變換器AD694299 6.4 電流/電壓變換器(I/V)302 6.4.1 I/V變換電路302 6.4.2 RCV420型I/V變換器303 6.5 具有放大、濾波、激勵功能的模塊2B30/2B31305 6.6 模擬信號隔離放大器313 6.6.1 隔離放大器ISO100313 6.6.2 隔離放大器ISO120316 6.6.3 隔離放大器ISO122319 6.6.4 隔離放大器ISO130323 6.6.5 隔離放大器ISO212P326 6.6.6 由兩片VFC320組成的隔離放大器329 6.6.7 由兩光耦組成的實用線性隔離放大器333 6.7 數(shù)字電位器及其應(yīng)用336 6.7.1 非易失性數(shù)字電位器x9221336 6.7.2 非易失性數(shù)字電位器x9241343 6.8 傳感器供電電源的配置及抗干擾346 6.8.1 傳感器供電電源的擾動補(bǔ)償347 6.8.2 單片集成精密電壓芯片349 6.8.3 A/D轉(zhuǎn)換器芯片提供基準(zhǔn)電壓350 6.9 測量單元噪聲抑制措施351 6.9.1 外部噪聲源的干擾及其抑制351 6.9.2 輸入信號串模干擾的抑制352 6.9.3 輸入信號共模干擾的抑制353 6.9.4 儀器儀表的接地噪聲355 第7章 D/A、A/D單元配置與抗干擾設(shè)計 7.1 D/A、A/D轉(zhuǎn)換器的干擾源357 7.2 D/A轉(zhuǎn)換原理及抗干擾分析358 7.2.1 T型電阻D/A轉(zhuǎn)換器359 7.2.2 基準(zhǔn)電源精度要求361 7.2.3 D/A轉(zhuǎn)換器的尖峰干擾362 7.3 典型D/A轉(zhuǎn)換器與單片機(jī)接口363 7.3.1 并行12位D/A轉(zhuǎn)換器AD667363 7.3.2 串行12位D/A轉(zhuǎn)換器MAX5154370 7.4 D/A轉(zhuǎn)換器與單片機(jī)的光電接口電路377 7.5 A/D轉(zhuǎn)換器原理與抗干擾性能378 7.5.1 逐次比較式ADC原理378 7.5.2 余數(shù)反饋比較式ADC原理378 7.5.3 雙積分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D轉(zhuǎn)換器與單片機(jī)接口387 7.6.18 位并行逐次比較式MAX 118387 7.6.28 通道12位A/D轉(zhuǎn)換器MAX 197394 7.6.3 雙積分式A/D轉(zhuǎn)換器5G14433399 7.6.4 V/F轉(zhuǎn)換器AD 652在A/D轉(zhuǎn)換器中的應(yīng)用403 7.7 采樣保持電路與抗干擾措施408 7.8 多路模擬開關(guān)與抗干擾措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路開關(guān)配置與抗干擾技術(shù)413 7.9 D/A、A/D轉(zhuǎn)換器的電源、接地與布線416 7.10 精密基準(zhǔn)電壓電路與噪聲抑制416 7.10.1 基準(zhǔn)電壓電路原理417 7.10.2 引腳可編程精密基準(zhǔn)電壓源AD584418 7.10.3 埋入式齊納二極管基準(zhǔn)AD588420 7.10.4 低漂移電壓基準(zhǔn)MAX676/MAX677/MAX678422 7.10.5 低功率低漂移電壓基準(zhǔn)MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密電壓基準(zhǔn)電路430 第8章 功率接口與抗干擾設(shè)計 8.1 功率驅(qū)動元件432 8.1.1 74系列功率集成電路432 8.1.2 75系列功率集成電路433 8.1.3 MOC系列光耦合過零觸發(fā)雙向晶閘管驅(qū)動器435 8.2 輸出控制功率接口電路438 8.2.1 繼電器輸出驅(qū)動接口438 8.2.2 繼電器—接觸器輸出驅(qū)動電路439 8.2.3 光電耦合器—晶閘管輸出驅(qū)動電路439 8.2.4 脈沖變壓器—晶閘管輸出電路440 8.2.5 單片機(jī)與大功率單相負(fù)載的接口電路441 8.2.6 單片機(jī)與大功率三相負(fù)載間的接口電路442 8.3 感性負(fù)載電路噪聲的抑制442 8.3.1 交直流感性負(fù)載瞬變噪聲的抑制方法442 8.3.2 晶閘管過零觸發(fā)的幾種形式445 8.3.3 利用晶閘管抑制感性負(fù)載的瞬變噪聲447 8.4 晶閘管變流裝置的干擾和抑制措施448 8.4.1 晶閘管變流裝置電氣干擾分析448 8.4.2 晶閘管變流裝置的抗干擾措施449 8.5 固態(tài)繼電器451 8.5.1 固態(tài)繼電器的原理和結(jié)構(gòu)451 8.5.2 主要參數(shù)與選用452 8.5.3 交流固態(tài)繼電器的使用454 第9章 人機(jī)對話單元配置與抗干擾設(shè)計 9.1 鍵盤接口抗干擾問題456 9.2 LED顯示器的構(gòu)造與特點458 9.3 LED的驅(qū)動方式459 9.3.1 采用限流電阻的驅(qū)動方式459 9.3.2 采用LM317的驅(qū)動方式460 9.3.3 串聯(lián)二極管壓降驅(qū)動方式462 9.4 典型鍵盤/顯示器接口芯片與單片機(jī)接口463 9.4.1 8位LED驅(qū)動器ICM 7218B463 9.4.2 串行LED顯示驅(qū)動器MAX 7219468 9.4.3 并行鍵盤/顯示器專用芯片8279482 9.4.4 串行鍵盤/顯示器專用芯片HD 7279A492 9.5 LED顯示接口的抗干擾措施502 9.5.1 LED靜態(tài)顯示接口的抗干擾502 9.5.2 LED動態(tài)顯示接口的抗干擾506 9.6 打印機(jī)接口與抗干擾技術(shù)508 9.6.1 并行打印機(jī)標(biāo)準(zhǔn)接口信號508 9.6.2 打印機(jī)與單片機(jī)接口電路509 9.6.3 打印機(jī)電磁干擾的防護(hù)設(shè)計510 9.6.4 提高數(shù)據(jù)傳輸可靠性的措施512 第10章 供電電源的配置與抗干擾設(shè)計 10.1 電源干擾問題概述513 10.1.1 電源干擾的類型513 10.1.2 電源干擾的耦合途徑514 10.1.3 電源的共模和差模干擾515 10.1.4 電源抗干擾的基本方法516 10.2 EMI電源濾波器517 10.2.1 實用低通電容濾波器518 10.2.2 雙繞組扼流圈的應(yīng)用518 10.3 EMI濾波器模塊519 10.3.1 濾波器模塊基礎(chǔ)知識519 10.3.2 電源濾波器模塊521 10.3.3 防雷濾波器模塊531 10.3.4 脈沖群抑制模塊532 10.4 瞬變干擾吸收器件532 10.4.1 金屬氧化物壓敏電阻(MOV)533 10.4.2 瞬變電壓抑制器(TVS)537 10.5 電源變壓器的屏蔽與隔離552 10.6 交流電源的供電抗干擾方案553 10.6.1 交流電源配電方式553 10.6.2 交流電源抗干擾綜合方案555 10.7 供電直流側(cè)抑制干擾措施555 10.7.1 整流電路的高頻濾波555 10.7.2 串聯(lián)型直流穩(wěn)壓電源配置與抗干擾556 10.7.3 集成穩(wěn)壓器使用中的保護(hù)557 10.8 開關(guān)電源干擾的抑制措施559 10.8.1 開關(guān)噪聲的分類559 10.8.2 開關(guān)電源噪聲的抑制措施560 10.9 微機(jī)用不間斷電源UPS561 10.10 采用晶閘管無觸點開關(guān)消除瞬態(tài)干擾設(shè)計方案564 第11章 印制電路板的抗干擾設(shè)計 11.1 印制電路板用覆銅板566 11.1.1 覆銅板材料566 11.1.2 覆銅板分類568 11.1.3 覆銅板的標(biāo)準(zhǔn)與電性能571 11.1.4 覆銅板的主要特點和應(yīng)用583 11.2 印制板布線設(shè)計基礎(chǔ)585 11.2.1 印制板導(dǎo)線的阻抗計算585 11.2.2 PCB布線結(jié)構(gòu)和特性阻抗計算587 11.2.3 信號在印制板上的傳播速度589 11.3 地線和電源線的布線設(shè)計590 11.3.1 降低接地阻抗的設(shè)計590 11.3.2 減小電源線阻抗的方法591 11.4 信號線的布線原則592 11.4.1 信號傳輸線的尺寸控制592 11.4.2 線間串?dāng)_控制592 11.4.3 輻射干擾的抑制593 11.4.4 反射干擾的抑制594 11.4.5 微機(jī)自動布線注意問題594 11.5 配置去耦電容的方法594 11.5.1 電源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的選用與器件布局596 11.6.1 芯片選用指南596 11.6.2 器件的布局597 11.6.3 時鐘電路的布置598 11.7 多層印制電路板599 11.7.1 多層印制板的結(jié)構(gòu)與特點599 11.7.2 多層印制板的布局方案600 11.7.3 20H原則605 11.8 印制電路板的安裝和板間配線606 第12章 軟件抗干擾原理與方法 12.1 概述607 12.1.1 測控系統(tǒng)軟件的基本要求607 12.1.2 軟件抗干擾一般方法607 12.2 指令冗余技術(shù)608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 軟件陷阱技術(shù)609 12.3.1 軟件陷阱609 12.3.2 軟件陷阱的安排610 12.4 故障自動恢復(fù)處理程序613 12.4.1 上電標(biāo)志設(shè)定614 12.4.2 RAM中數(shù)據(jù)冗余保護(hù)與糾錯616 12.4.3 軟件復(fù)位與中斷激活標(biāo)志617 12.4.4 程序失控后恢復(fù)運行的方法618 12.5 數(shù)字濾波619 12.5.1 程序判斷濾波法620 12.5.2 中位值濾波法620 12.5.3 算術(shù)平均濾波法621 12.5.4 遞推平均濾波法623 12.5.5 防脈沖干擾平均值濾波法624 12.5.6 一階滯后濾波法626 12.6 干擾避開法627 12.7 開關(guān)量輸入/輸出軟件抗干擾設(shè)計629 12.7.1 開關(guān)量輸入軟件抗干擾措施629 12.7.2 開關(guān)量輸出軟件抗干擾措施629 12.8 編寫軟件的其他注意事項630 附錄 電磁兼容器件選購信息632
標(biāo)簽: 單片機(jī) 應(yīng)用系統(tǒng) 抗干擾技術(shù)
上傳時間: 2013-10-20
上傳用戶:xdqm
FPGA與ARM EPI通信,控制16路步進(jìn)電機(jī)和12路DC馬達(dá) VHDL編寫的,,,,,
上傳時間: 2013-10-21
上傳用戶:zhyfjj
為了能實時監(jiān)控?zé)o人機(jī)的狀態(tài)和提高無人機(jī)的安全可靠性,本設(shè)計利用FPGA高速率、豐富的片上資源和靈活的設(shè)計接口,設(shè)計了一套無人機(jī)多路監(jiān)控系統(tǒng)。該監(jiān)控系統(tǒng)具備了將處于無人機(jī)不同位置的攝像機(jī)所采集的視頻信息,傳送給地面站控制設(shè)備,并在同一臺顯示器上實現(xiàn)同步顯示的功能。仿真結(jié)果表明,該系統(tǒng)可以很好的保證監(jiān)控視頻的實時性、和高清度,確保無人機(jī)完成偵查任務(wù)。
標(biāo)簽: FPGA 無人機(jī) 多路 視頻監(jiān)控
上傳時間: 2013-10-22
上傳用戶:cxl274287265
摘 要:研究一種基于FPGA的多路視頻合成系統(tǒng)。系統(tǒng)接收16路ITU656格式的視頻數(shù)據(jù),按照畫面分割的要求對視頻數(shù)據(jù)流進(jìn)行有效抽取和幀合成處理,經(jīng)過視頻編碼芯片轉(zhuǎn)換成模擬信號輸出到顯示器,以全屏或多窗口模式顯示多路視頻畫面。系統(tǒng)利用FPGA的高速并行處理能力的優(yōu)勢,應(yīng)用靈活的的多路視頻信號的合成技術(shù)和數(shù)字圖像處理算法,實現(xiàn)實時處理多路視頻數(shù)據(jù)。
上傳時間: 2014-12-05
上傳用戶:jiangfire
伺服舵機(jī)作為基本的輸出執(zhí)行機(jī)構(gòu)廣泛應(yīng)用于 遙控航模以及人形機(jī)器人的控制中。舵機(jī)是一種位 置伺服的驅(qū)動器,其控制信號是PWM信號.,利 用占空比的變化改變舵機(jī)的位置,也可使用FPGA、 模擬電路、單片機(jī)來產(chǎn)生舵機(jī)的控制信號舊。應(yīng) 用模擬電路產(chǎn)生PWM信號,應(yīng)用的元器件較多, 會增加電路的復(fù)雜程度;若用單片機(jī)產(chǎn)生PWM信 號,當(dāng)信號路數(shù)較少時單片機(jī)能滿足要求,但當(dāng) PWM信號多于4路時,由于單片機(jī)指令是順序執(zhí) 行的,會產(chǎn)生較大的延遲,從而使PWM信號波形 不穩(wěn),導(dǎo)致舵機(jī)發(fā)生顫振。
上傳時間: 2014-12-28
上傳用戶:ainimao
七天玩轉(zhuǎn)Altera:學(xué)習(xí)FPGA必經(jīng)之路包括基礎(chǔ)篇、時序篇和驗證篇三個部分。
上傳時間: 2013-10-11
上傳用戶:woshinimiaoye
為有效控制固態(tài)功率調(diào)制設(shè)備,提高系統(tǒng)的可調(diào)性和穩(wěn)定性,介紹了一種基于現(xiàn)場可編程門陣列( FPGA)和微控制器(MCU) 的多路高壓IGBT 驅(qū)動觸發(fā)器的設(shè)計方法和實現(xiàn)電路。該觸發(fā)器可選擇內(nèi)或外觸發(fā)信號,可遙控或本控,能產(chǎn)生多路頻率、寬度和延時獨立可調(diào)的脈沖信號,信號的輸入輸出和傳輸都使用光纖。將該觸發(fā)器用于高壓IGBT(3300 V/ 800 A) 感應(yīng)疊加脈沖發(fā)生器中進(jìn)行實驗測試,給出了實驗波形。結(jié)果表明,該多路高壓IGBT驅(qū)動觸發(fā)器輸出脈沖信號達(dá)到了較高的調(diào)整精度,頻寬’脈寬及延時可分別以步進(jìn)1 Hz、0. 1μs、0. 1μs 進(jìn)行調(diào)整,滿足了脈沖發(fā)生器的要求,提高了脈沖功率調(diào)制系統(tǒng)的性能。
上傳時間: 2013-10-22
上傳用戶:zhulei420
高速串并轉(zhuǎn)換器的設(shè)計是FPGA 設(shè)計的一個重要方面,傳統(tǒng)設(shè)計方法由于采用FPGA 的內(nèi)部邏輯資源來實現(xiàn),從而限制了串并轉(zhuǎn)換的速度。該研究以網(wǎng)絡(luò)交換調(diào)度系統(tǒng)的FGPA 驗證平臺中多路高速串并轉(zhuǎn)換器的設(shè)計為例,詳細(xì)闡述了1 :8DDR 模式下高速串并轉(zhuǎn)換器的設(shè)計方法和16 路1 :8 串并轉(zhuǎn)換器的實現(xiàn)。結(jié)果表明,采用Xilinx Virtex24 的ISERDES 設(shè)計的多路串并轉(zhuǎn)換器可以實現(xiàn)800 Mbit/ s 輸入信號的串并轉(zhuǎn)換,并且減少了設(shè)計復(fù)雜度,縮短了開發(fā)周期,能滿足設(shè)計要求。關(guān)鍵詞:串并轉(zhuǎn)換;現(xiàn)場可編程邏輯陣列;Xilinx ; ISERDES
標(biāo)簽: FPGA 多路 串并轉(zhuǎn)換
上傳時間: 2013-11-03
上傳用戶:王小奇
帶解碼四路無線遙控接收模塊
上傳時間: 2013-11-13
上傳用戶:小眼睛LSL
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1