采用現(xiàn)場可編程門陣列(FPGA)可以快速實現(xiàn)數(shù)字電路,但是用于生成FPGA編程的比特流文件的CAD工具在編制大規(guī)模電路時常常需要數(shù)小時的時間,以至于許多設計者甚至通過在給定FPGA上采用更多的資源,或者以犧牲電路速度為代價來提高編制速度。電路編制過程中大部分時間花費在布線階段,因此有效的布線算法能極大地減少布線時間。 許多布線算法已經(jīng)被開發(fā)并獲得應用,其中布爾可滿足性(SAT)布線算法及幾何查找布線算法是當前最為流行的兩種。然而它們各有缺點:基于SAT的布線算法在可擴展性上有很大缺陷;幾何查找布線算法雖然具有廣泛的拆線重布線能力,但當實際問題具有嚴格的布線約束條件時,它在布線方案的收斂方面存在很大困難。基于此,本文致力于探索一種能有效解決以上問題的新型算法,具體研究工作和結(jié)果可歸納如下。 1、在全面調(diào)查FPGA結(jié)構(gòu)的最新研究動態(tài)的基礎上,確定了一種FPGA布線結(jié)構(gòu)模型,即一個基于SRAM的對稱陣列(島狀)FPGA結(jié)構(gòu)作為研究對象,該模型僅需3個適合的參數(shù)即能表示布線結(jié)構(gòu)。為使所有布線算法可在相同平臺上運行,選擇了美國北卡羅來納州微電子中心的20個大規(guī)模電路作為基準,并在布線前采用VPR399對每個電路都生成30個布局,從而使所有的布線算法都能夠直接在這些預制電路上運行。 2、詳細研究了四種幾何查找布線算法,即一種基本迷宮布線算法Lee,一種基于協(xié)商的性能驅(qū)動的布線算法PathFinder,一種快速的時延驅(qū)動的布線算法VPR430和一種協(xié)商A
上傳時間: 2013-05-18
上傳用戶:ukuk
在超深亞微米技術工藝下,布局成為超大規(guī)模集成電路物理設計中至關重要的一步。由于現(xiàn)場可編程門陣列(Field Programable Gate Array,F(xiàn)PGA)布線資源的預先確定性,使得FPGA的布局更為重要。本文以建立高性能、低擁擠的布局為目標,從FPGA芯片結(jié)構(gòu)和布局算法兩方面進行了深入研究。論文提出了一種通用的層次式FPGA(HFPGA)結(jié)構(gòu)模型及布局模型,并且給出了該模型的數(shù)學計算公式;提出將元件之間的層次距離轉(zhuǎn)化為線長的方法,實現(xiàn)了基于線網(wǎng)模型的高精度布局算法:提出利用矩形的對角線元件之間層次來代替線長,從而達到優(yōu)化線長的同時提高布通率的快速布局算法。實驗結(jié)果表明,兩種算法均在北卡羅來納微電子中心(MCNC)學術芯片測試案例上取得了較理想的布局實驗效果,為下一步的布線工作建立了良好的基礎接口,并且完成了初始布線的工作。本FPGA結(jié)構(gòu)模型的提出和布局算法的實現(xiàn)也都為工業(yè)界提供了借鑒價值。
上傳時間: 2013-04-24
上傳用戶:nbdedu
采用FPGA 實現(xiàn)π/ 4 DQPSK調(diào)制器--\r\n北 方 交 通 大 學 學 報
上傳時間: 2013-08-11
上傳用戶:stampede
武漢理工 課設
上傳時間: 2013-10-30
上傳用戶:xiehao13
信號完整性問題是高速PCB 設計者必需面對的問題。阻抗匹配、合理端接、正確拓撲結(jié)構(gòu)解決信號完整性問題的關鍵。傳輸線上信號的傳輸速度是有限的,信號線的布線長度產(chǎn)生的信號傳輸延時會對信號的時序關系產(chǎn)生影響,所以PCB 上的高速信號的長度以及延時要仔細計算和分析。運用信號完整性分析工具進行布線前后的仿真對于保證信號完整性和縮短設計周期是非常必要的。在PCB 板子已焊接加工完畢后才發(fā)現(xiàn)信號質(zhì)量問題和時序問題,是經(jīng)費和產(chǎn)品研制時間的浪費。1.1 板上高速信號分析我們設計的是基于PowerPC 的主板,主要由處理器MPC755、北橋MPC107、北橋PowerSpanII、VME 橋CA91C142B 等一些電路組成,上面的高速信號如圖2-1 所示。板上高速信號主要包括:時鐘信號、60X 總線信號、L2 Cache 接口信號、Memory 接口信號、PCI 總線0 信號、PCI 總線1 信號、VME 總線信號。這些信號的布線需要特別注意。由于高速信號較多,布線前后對信號進行了仿真分析,仿真工具采用Mentor 公司的Hyperlynx7.1 仿真軟件,它可以進行布線前仿真和布線后仿真。
上傳時間: 2013-11-04
上傳用戶:herog3
計算機網(wǎng)絡是高校計算機專業(yè)和大部分理工類非計算機專業(yè)必修課,在教學過程中設計實驗,讓學生動手驗證抽象的計算機網(wǎng)絡原理,是提高教學質(zhì)量必不可少的環(huán)節(jié),傳統(tǒng)的構(gòu)建計算機網(wǎng)絡實驗室的方法成本高,師生受時空限制。文中設計并實現(xiàn)了NS-2環(huán)境下的以太網(wǎng)絡實驗,給出了一般實驗設計流程,克服了構(gòu)建真實物理環(huán)境實驗的成本高、靈活性差等缺點,同時對流程稍作修改,便可設計更多的計算機網(wǎng)絡技術實驗,具有擴展性強、靈活性高的特點。
上傳時間: 2013-12-21
上傳用戶:喵米米米
武漢理工 數(shù)控直流源
標簽: 數(shù)控直流源 報告
上傳時間: 2013-11-12
上傳用戶:三人用菜
淮南煤礦區(qū)地跨淮河兩岸,轄有大通、田家庵、謝家集、八公山、潘集5個行政區(qū),人口106.30萬,是國家大型煤炭生產(chǎn)基地之一?;茨瞎╇娛加诿駠?9年(1930年)4月,當時僅有1臺7.5千瓦直流發(fā)電機發(fā)電,供九龍崗礦場地面照明。民國25年,九龍崗東西兩礦,有1路1.70公里的2.3千伏送電線相聯(lián),各裝1臺10千伏安變壓器。民國27年后,日本侵略軍占領淮南,在大通、九龍崗兩區(qū)建礦采煤,掠奪煤炭資源,民國32年,建成下窯(田家庵)發(fā)電所,架設經(jīng)大通至九龍崗22千伏同桿(鐵塔)雙固路輸電線,和大通、九龍崗2個變電所,以3.3千伏向礦井配電??谷諔?zhàn)爭勝利后,民國36年4月,淮南路礦公司架設田家庵至八公山22千伏輸電線。至此22千伏線路全長37.10公里,變電所4個,降壓變壓器11臺,總?cè)萘?500千伏安。民國37年售電量1189.60萬千瓦·時,主要供煤礦用電。建國后,先后對謝一、謝二、謝三礦和李咀孜礦進行勘探建井。1954年,原22千伏線路和變電所升壓為35千伏供電。1958年起以110千伏電壓供電。至1972年,發(fā)展成為工商業(yè)區(qū)和政治文化中心的東部地區(qū),也升壓為110千伏供電。1975年淮河北岸潘集礦區(qū)開始建設,負荷中心北移,由田家庵電廠出線跨越淮河至潘集礦區(qū)的110千伏輸變電工程同時投運。1978~1982年間,淮南礦區(qū)又先后建成田家庵電廠經(jīng)西山變電所至淮河北岸蘆集變電所的220千伏系統(tǒng)。1985年,田家庵、洛河電廠裝機總?cè)萘窟_90.10萬千瓦,市內(nèi)供電網(wǎng)相應加強,全礦區(qū)已形成主要由田家庵電廠110千伏母線和220千伏西山變電所、蘆集變電所3點分片供電,以220千伏和110千伏高壓配電網(wǎng)聯(lián)合供電的格局。同時,一些大型廠礦都有自備35千伏及以上變電所,并向附近中小企業(yè)轉(zhuǎn)供電,形成東部田家庵、大通兩區(qū),中部望峰崗地區(qū),西部謝集、八公山兩區(qū),淮河北岸潘集區(qū)組成的4個公用中低壓配電網(wǎng)絡。1985年,全市最高負荷19.55萬千瓦,供電量16億多千瓦·時。其中,煤炭工業(yè)最高負荷9.34萬千瓦,用電量4.99億千瓦·時,占全市用電量的三分之一。
標簽: 礦區(qū)供電
上傳時間: 2013-10-12
上傳用戶:fandeshun
SDRAM的原理和時序 SDRAM內(nèi)存模組與基本結(jié)構(gòu) 我們平時看到的SDRAM都是以模組形式出現(xiàn),為什么要做成這種形式呢?這首先要接觸到兩個概念:物理Bank與芯片位寬。1、 物理Bank 傳統(tǒng)內(nèi)存系統(tǒng)為了保證CPU的正常工作,必須一次傳輸完CPU在一個傳輸周期內(nèi)所需要的數(shù)據(jù)。而CPU在一個傳輸周期能接受的數(shù) 據(jù)容量就是CPU數(shù)據(jù)總線的位寬,單位是bit(位)。當時控制內(nèi)存與CPU之間數(shù)據(jù)交換的北橋芯片也因此將內(nèi)存總線的數(shù)據(jù)位寬 等同于CPU數(shù)據(jù)總線的位寬,而這個位寬就稱之為物理Bank(Physical Bank,下文簡稱P-Bank)的位寬。所以,那時的內(nèi)存必須要組織成P-Bank來與CPU打交道。資格稍老的玩家應該還記 得Pentium剛上市時,需要兩條72pin的SIMM才能啟動,因為一條72pin -SIMM只能提供32bit的位寬,不能滿足Pentium的64bit數(shù)據(jù)總線的需要。直到168pin-SDRAM DIMM上市后,才可以使用一條內(nèi)存開機。不過要強調(diào)一點,P-Bank是SDRAM及以前傳統(tǒng)內(nèi)存家族的特有概念,RDRAM中將以通道(Channel)取代,而對 于像Intel E7500那樣的并發(fā)式多通道DDR系統(tǒng),傳統(tǒng)的P-Bank概念也不適用。2、 芯片位寬 上文已經(jīng)講到SDRAM內(nèi)存系統(tǒng)必須要組成一個P-Bank的位寬,才能使CPU正常工作,那么這個P-Bank位寬怎么得到呢 ?這就涉及到了內(nèi)存芯片的結(jié)構(gòu)。 每個內(nèi)存芯片也有自己的位寬,即每個傳輸周期能提供的數(shù)據(jù)量。理論上,完全可以做出一個位寬為64bit的芯片來滿足P-Ban k的需要,但這對技術的要求很高,在成本和實用性方面也都處于劣勢。所以芯片的位寬一般都較小。臺式機市場所用的SDRAM芯片 位寬最高也就是16bit,常見的則是8bit。這樣,為了組成P-Bank所需的位寬,就需要多顆芯片并聯(lián)工作。對于16bi t芯片,需要4顆(4×16bit=64bit)。對于8bit芯片,則就需要8顆了。以上就是芯片位寬、芯片數(shù)量與P-Bank的關系。P-Bank其實就是一組內(nèi)存芯片的集合,這個集合的容量不限,但這個集合的 總位寬必須與CPU數(shù)據(jù)位寬相符。隨著計算機應用的發(fā)展,
上傳時間: 2013-11-04
上傳用戶:zhuimenghuadie
交通燈控制器的設計與實現(xiàn)一、實驗目的1. 了解交通燈管理的基本工作原理。2. 熟悉8253計數(shù)器/定時器、8259A中斷控制器和8255A并行接口的工作方式及應用編程。3. 掌握多位LED顯示的方法。 二、 實驗內(nèi)容與要求設計一個用于十字路口的交通燈控制器。1.基本要求: 1) 東西和南北方向各有一組紅,黃,綠燈用于指揮交通,紅,黃,綠的持續(xù)時間分別為25s,5s,20s。2) 當有緊急情況(如消防車)時,兩個方向均為紅燈亮,計時停止,當特殊情況結(jié)束后,控制器恢復原來狀態(tài),正常工作。3) 一組數(shù)碼管,以倒計時方式顯示兩個方向允許通行或禁止通行的時間。2.提高部分:1) 實時修改交通燈的持續(xù)時間。2) 根據(jù)不同時段對主要交通方向的信號進行調(diào)整。3) 可以使用LCD顯示提示信息。 三、實驗報告要求 1.設計目的和內(nèi)容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單 5.設計結(jié)果和體會(包括遇到的問題及解決的方法) 四、總體設計交通燈的工作過程如下:設十字路口的1、3為南,北方向,2、4為東西方向,初始態(tài)為4個路口的紅燈全亮。之后,1、3路口的綠燈亮,2、4路口的紅燈亮,1、3路口方向通車,2個路口的LED數(shù)碼管開始倒計時25秒。延遲20秒后,1、3路口的綠燈熄滅,而1,3路口的黃燈開始閃爍(1HZ)。閃爍5次后,1、3路口的紅燈亮,同時2、4路口的綠燈亮,2、4路口方向開始通車,2個路口的LED數(shù)碼管重新開始倒計時25秒。延遲20秒時間后,2、4路口的綠燈熄滅,而黃燈開始閃爍。閃爍5次后,再切換到1、3路口方向。之后,重復上述過程。當有緊急情況時,2個方向都紅燈亮,倒計時停止,車輛禁止通行,當緊急情況結(jié)束后,控制器恢復以前的狀態(tài)繼續(xù)工作。 在設計中采用6個發(fā)光二極管來模擬2個路口的黃紅綠燈,每個路口用2個數(shù)碼管來顯示通行或禁止剩余的時間。緊急情況用一個單脈沖發(fā)生單元申請中斷來模擬,緊急情況結(jié)束后,再發(fā)一個中斷來恢復以前的狀態(tài)。 根據(jù)前面的介紹,本設計硬件由定時模塊、發(fā)光二極管模塊、數(shù)碼管顯示模塊和緊急中斷模塊組成。定時模塊采用硬件定時和軟件定時相結(jié)合的方法,用8253定時/計數(shù)器定時100ms,再用軟件計時實現(xiàn)所需的定時。發(fā)光二極管模塊由8255控制發(fā)光二極管來實現(xiàn)。數(shù)碼管顯示模塊由實驗平臺上的LED顯示模塊實現(xiàn)。緊急中斷模塊是由單脈沖發(fā)生單元和8279中斷控制器組成。 程序主要是由定時子程序、發(fā)光二極管顯示子程序、數(shù)碼管顯示子程序和中斷服務程序組成。包括對8253、8255以及8259等可編程器件的編程。 五、硬件設計 本課題的設計可通過實驗平臺上的一些功能模塊電路組成,由于各模塊電路內(nèi)部已經(jīng)連接,用戶在使用時只要設計模塊間電路的連接,因此,硬件電路的設計及實現(xiàn)相對簡單。完整系統(tǒng)的硬件連接如圖1所示。硬件電路由定時模塊、發(fā)光二極管模塊、數(shù)碼管顯示模塊和緊急中斷模塊組成。 定時模塊是由8253的計數(shù)器0來實現(xiàn)定時100ms。Clk0接實驗平臺分頻電路輸出Q6,f=46875hz。GATE0接8255的PA0,由8255輸出來控制計數(shù)器的起停。OUT0接8259的IRQ2,定時完成申請中斷,進入中斷服務程序。 發(fā)光二極管顯示模塊由8255輸出來控制發(fā)光二極管的亮滅。8255輸出為低電平時,對應的發(fā)光二極管就點亮,否則就熄滅。8255的接口電路如圖2所示。交通燈的對應關系如下:L7 L6 L5 L2 L1 L0PC7 PC6 PC5 PC2 PC1 PC013紅燈 13黃燈 13綠燈 24紅燈 24黃燈 24綠燈 實驗平臺上提供一組六個LED數(shù)碼管。插孔CS1用于數(shù)碼管段選的輸出選通,插孔CS2用于數(shù)碼管位選信號的輸出選通。本設計用4個數(shù)碼管來倒計時。 緊急中斷模塊是由單脈沖發(fā)生單元和8259中斷控制器,單脈沖發(fā)生單元主要用來請求中斷,然后做出緊急情況處理。
標簽: 交通燈控制器
上傳時間: 2013-10-07
上傳用戶:小小小熊