電液控制作為液壓控制的一個新分支,因為其本身的特點正得到越來越廣泛的應用。電液控制系統的發展對電液控制技術提出了更高的要求,這必將促進電液控制技術的發展。本文在教研室多年電液控制經驗的基礎上,提出開發通用型電液系統數字控制器。 通過對電液控制技術的研究,了解電液系統的一般構成,結合多個具體實例,本文提出數字式電液控制器概念,以ARM微處理器為硬件核心,采用多種智能控制算法解決電液系統閉環控制問題。 數字控制器以PHILIPS公司的32位ARM7微處理器LPC2292為硬件核心,配有高速AD、DA轉換器。硬件設計注重通用性,具有多種輸入、輸出通道,可以采集和輸出多種、多個模擬量信號和數字量信。具有多種通信接口,可以實現近距離監控或者遠距離操控。人機交互通道豐富,具有報警、狀態指示、參數顯示等功能。采用光電隔離、獨立電源、屏蔽外殼等措施保證控制器具有良好的穩定性、可靠性。軟件設計采用UC/OS-II嵌入式操作系統,內部集成多種智能控制算法,保證電液系統閉環控制取得良好的效果。開發模擬試驗系統,可以模擬電液系統現場的各種信號和閉環回路,實現實驗室調試。采用Visual Basic開發上位機軟件,配合控制器完成參數修改、保存,繪制實時監控曲線,控制硬件等功能。 控制器解決了電液系統多樣性難題,客服模擬控制的缺點。研發出模糊自整定PID算法,它成功解決了閉環控制過程中設定信號不斷變化的難題。經過多次現場調試,目前控制器已經成功應用于國內多家企業的輪胎耐久性試驗機和密煉機兩種電液系統,在這兩種系統中成功取代進口國外模擬控制器,并且控制效果好于國外模擬控制器。關鍵詞:電液系統;ARM7;UC/OS-II;模糊自整定
上傳時間: 2013-05-31
上傳用戶:3233
智能控制器是智能斷路器的核心,不僅具有普通脫扣器的各種保護功能,而且還具有實時參數顯示、故障記憶和查詢、自診斷等多項功能。在回顧和總結了智能斷路器的發展歷程后,討論了當前智能斷路器的發展趨勢,提出了基于ARM的斷路器智能控制器的研究。本論文介紹了斷路器智能控制器的設計原理,同時重點闡述了斷路器智能控制器的各項參數測量及保護原理和算法,并進行了具體的硬件和軟件模塊的設計,旨在實現斷路器的智能保護。 本文涉及的斷路器智能控制器,在硬件上以PHILIPS公司的ARM芯片LPC2294為核心處理器,主要進行數據的實時采集處理和斷路器的故障保護。硬件設計采用了標準化模塊設計方法,硬件電路盡可能選擇標準化、模塊化結構的典型電路,以便擴展。其中,液晶選用的是SMG240128A,鍵盤芯片選用的是ZLG7290。軟件的編制采用模塊化編程方法,每一個模塊相對獨立,完成特定功能,便于維護添加新功能。編程工具為ARM公司提供的ADS1.2。為了保證智能控制器各種保護功能的可靠實現,論文中對智能控制器的干擾源進行了分析,從硬件和軟件兩個方面采取了多項設計措施,提高了智能控制器的穩定性和可靠性。實踐證明,論文中構建的斷路器智能控制器結構簡單,易于實現,可以滿足系統需要,因此具有較高的實用價值。
上傳時間: 2013-06-10
上傳用戶:yy307115118
本文對TCN中的MVB技術進行了研究,并在深入了解MVB的通信機制的基礎上,提出了采用FPGA替代MVB控制器專用芯片的解決方法。根據TCN協議,連接在MVB上的設備可以分為5類,其中1類設備可以在不需要CPU的基礎上實現自動通信,最為常用。本設計的目的就是采用FPGA替代MVB1類設備控制器。 文章采用自頂向下的模塊化設計方法,根據MVB1類設備控制器要實現的功能,將設計劃分為3個模塊:發送模塊、接收模塊和MVB1類模式控制模塊。其中發送模塊又劃分為位控制單元、CRC生成單元、FIFO單元和曼徹斯特編碼單元等。接收模塊又劃分為幀起始檢測單元、時鐘恢復單元、幀分界符檢測單元、數據譯碼單元、CRC校驗單元、譯碼控制單元和長度錯誤檢測單元等。MVB1類模式控制模塊又劃分為報文錯誤處理單元、主幀寄存器單元、TM控制單元和主控單元等。上述各模塊的RTL級設計都是采用硬件描述語言Verilog實現的。
上傳時間: 2013-07-21
上傳用戶:dengzb84
本文將EDA技術與傳統的控制理論相結合,研制了一種全新的基于FPGA技術之上的PID和模糊控制器,并加以優化后應用于FESTO液位控制系統上.該控制器基于PLD組成的系統,很自然地避開CPU的程序跑飛、死循環、復位不可靠等缺點,最大程度的提高設計效率和系統的可靠性;同時相對于傳統的硬件控制器而言,它的高集成度所需較少外圍電路,降低設計成本,為控制器地實現提供了一種新方案.此外,本文的模糊控制器對傳統規則表進行改進,在被控量接近穩態值時規則表部分自適應于具體的期望值,消除了穩態值附近的震蕩,大大提高了系統的穩定性.
上傳時間: 2013-06-21
上傳用戶:my867513184
如今電力電子電路的控制旨在實現高頻開關的計算機控制,并向著更高頻率、更低損耗和全數字化的方向發展。現場可編程門陣列器件(FieldProgrammableGateArrays)是近年來嶄露頭角的一類新型集成電路,它具有簡潔、經濟、高速度、低功耗等優勢,又具有全集成化、適用性強,便于開發和維護(升級)等顯著優點。與單片機和DSP相比,FPGA的頻率更高、速度更快,這些特點順應了電力電子電路的日趨高頻化和復雜化發展的需要。因此,在越來越多的領域中FPGA得到了日益廣泛的發展和應用。 本文提出了一種采用現場可編程門陣列(FPGA)器件實現數字化通用PWM控制器的方案。該控制器能產生多路PWM脈沖,具有開關頻率可調、各路脈沖間的相位可調、接口簡單、響應速度快、易修改、可現場編程等特點,可應用于PWM的全數字化控制。文中對方案的實現進行了比較詳細的論述,包括A/D采樣控制、PI算法的實現、PWM波形的產生、各模塊的工作原理等。 本文還提出一種新型ZCT-PWMBoost變換器,詳細的分析了該變換器的工作過程,并采用基于FPGA的數字化通用PWM控制器對這種軟開關Boost變換器進行控制,給出了比較完滿的實驗結果。實驗結果驗證了該控制器以及該ZCTBoost變換器的可行性和有效性,
上傳時間: 2013-07-10
上傳用戶:x4587
隨著星載電子系統復雜度、小型化需求的提高,SoC已經成為應對未來星載電子系統設計需求的解決途徑。為了簡化設計流程并且提高部件的可重用性,在目前的SoC設計中引入了稱之為平臺的體系結構模板,用它來描述采用已有的標準核來開發SoC的方法。在星載電子系統中常用部件的分類設計,最終建立一個包括多種功能部件,互連部件和處理部件的設計平臺,從而有效的提高星載電子系統的設計能力。在當前NASA和ESA的空間應用中,PCI總線廣泛作為背板總線和局部總線,有鑒于此,本研究選擇PCI總線作為星載電子系統設計平臺要提供的一個互連部件對其進行設計。 針對這一需求,本論文采用自項向下的設計方法對PCI總線從設備控制器的設計與實現進行了研究,對PCI總線協議做了深刻的分析,完成了PCI總線目標設備控制器的設計,采用Verilog HDL對其進行了RTL級的描述。 在該課題的研究中,采用了目前集成電路設計中常見的自頂向下設計方法,使用硬件描述語言Verilog HDL對其進行描述,重點分析了PCI總線設備控制器的設計。以PCI總線協議的分析和理解為基礎,對PCI總線設備控制器進行了功能分析和結構劃分。根據PCI總線設備控制器的功能和結構劃分,對PCI總線目標設備控制器的設計思路和各個子模塊電路的設計和實現進行了詳細的分析闡述,并且通過編寫測試激勵程序完成了功能仿真。應用FPGA作為物理驗證和實現載體,進行了面向FPGA的電路綜合,進行了布局布線后的時序仿真,證明所實現的PCI目標設備控制器符合基本功能要求,在以上基礎上完成了PCI目標設備控制器的FPGA實現。通過這整個論文的工作,按照設計、仿真、綜合驗證及布局布線的步驟,完成了PCI總線目標設備控制器IP軟核的設計。
上傳時間: 2013-06-07
上傳用戶:tccc
高端濕熱環境試驗箱的溫濕度控制器有著如下特點:①、人機接口模塊大多采用彩色液晶屏和觸摸屏;②、控制器存儲容量大,可存儲大量溫濕度數據;⑧、溫濕度數據測量精度高;④、溫濕度控制精度高,具有自調整能力,可根據試驗條件的變化調節控制器內部參數。⑤、輔助功能多,如RS232串口通訊、USB通訊、以太網通訊等,方便和PC機的連接。此種類型的溫濕度控制器國內生產較少。 本文在綜述國內溫濕度控制技術的基礎上,提出了基于ARM9芯片的高性能溫濕度控制的設計方法。本文主要針對以下幾個方面進行了研究:研究試驗箱內熱力學過程并建立溫濕度控制系統的簡化數學模型;分析溫濕度控制箱的控制方法,選擇合理的溫濕度測量方案,提出了減少誤差的方法;分析溫濕度控制器的功能需求,完成了基于ARM的溫濕度控制器的硬件設計和調試;選擇了溫濕度控制系統的控制算法,并在設計的硬件平臺上實現;最后對控制效果進行了試驗分析。 本論文各章節主要內容概述如下: 第1章綜述了濕熱環境試驗設備技術和嵌入式系統技術進展,提出了課題的研究內容、難點和創新點。 第2章分析了濕熱環境試驗箱溫濕度控制的控制算法,分析了被控空氣的熱力學過程,得出簡化數學模型。 第3章對溫度、濕度測量系統及其誤差消除方法進行分析,提出基于AD7711的高精度溫濕度測量方案。 第4章分析溫濕度控制器的需求,完成溫濕度控制器硬件平臺的設計。 第5章研究溫濕度控制系統的控制算法,在硬件平臺上實現PID繼電自整定算法。 第6章對溫濕度控制的實際控制效果進行試驗分析。 第7章總結與展望。
上傳時間: 2013-04-24
上傳用戶:bjgaofei
在機器人學的研究領域中,如何有效地提高機器人控制系統的控制性能始終是研究學者十分關注的一個重要內容。在分析了工業機器人的發展歷程和機器人控制系統的研究現狀后,本論文的主要目標是針對四關節實驗室機器人特有的機械結構和數學模型,建立一個新型全數字的基于DSP和FPGA的機器人位置伺服控制系統的軟、硬件平臺,實現對四關節實驗室機器人的精確控制。 本論文從實際情況出發,首先分析了所研究的四關節實驗室機器人的本體結構,并對其抽象簡化得到了它的運動學數學模型。在明確了實現機器人精確位置伺服控制的控制原理后,我們對機器人控制系統的諸多可行性方案進行了充分論證,并最終決定采用了三級CPU控制的控制體系結構:第一級CPU為上位計算機,它實現對機器人的系統管理、協調控制以及完成機器人實時軌跡規劃等控制算法的運算;第二級CPU為高性能的DSP處理器,它輔之以具有高速并行處理能力的FPGA芯片,實現了對機器人多個關節的高速并行驅動;第三級CPU為交流伺服驅動處理器,它實現了機器人關節伺服電機的精確三閉環誤差驅動控制,以及電機的故障診斷和自動保護等功能。此外,我們采用比普通UART速度快得多的USB來實現上位計算機.與下位控制器之間的數據通信,這樣既保證了兩者之間連接方便,又有效的提高了控制系統的通信速度和可靠性。 機器人系統的軟件設計包括兩個部分:一是采用VC++實現的上位監控軟件系統,它主要負責機器人實時軌跡規劃等控制算法的運算,同時完成用戶與機器人系統之間的信息交互;二是采用C語言實現的下位DSP控制程序,它主要負責接收上位監控系統或者下位控制箱發送的控制信號,實現對機器人的實時驅動,同時還能夠實時的向上位監控系統或者下位控制箱反饋機器人的當前狀態信息。 研究開發出來的四關節實驗室機器人控制器具有控制實時性好、定位精度高、運行穩定可靠的特點,它允許用戶通過上位控制計算機實現對機器人的各種設定作業的控制,也可以讓用戶通過機器人控制箱現場對機器人進行回零、示教等各項操作。
上傳時間: 2013-04-24
上傳用戶:極客
隨著電力電子變流技術的不斷發展,各種先進的控制技術層出不窮。控制器也從過去的模擬電路時代逐漸進入到全數字控制時代。但是MCU/DSP等通用控制器本身串行程序流工作模式的限制,在實現復雜算法時往往難以滿足系統要求的快速性與實時性的要求,FPGA的出現為解決這個問題提供了一個新的方向。 本文首先對三相PWM整流器系統進行了研究。在查閱大量國內外文獻資料的基礎上,對整流器及其控制器的國內外發展現狀及研究趨勢做了詳細的研究,并對課題研究的意義有了更深入的認識。接下來對三相電壓型整流器的拓撲結構、數學模型、整流器的控制技術進行了分析。文中所采用的滯環電流控制算法具有結構簡單,電流響應速度快,不依賴系統參數,系統魯棒性好的特點。運用matlab仿真軟件,對該控制方法進行了仿真。然后對FPGA的發展歷程、應用、分類、開發工具、語言等內容進行了介紹。最后對滯環控制算法進行了模塊劃分,將其劃分為PI算法模塊,限幅與指令電流生成模塊,滯環比較模塊,PWM脈沖生成及死區保護模塊,AD控制及數據儲存模塊,并在Quartus II軟件環境下,使用VHDL語言通過編程實現模塊化設計。實踐證明,采用FPGA來實現PWM整流器控制算法是可行的。
上傳時間: 2013-04-24
上傳用戶:Ruzzcoy
本文利用Verilog HDL語言在FPGA上實現IC總線的規范,又簡要介紹了Quartus Ⅱ設計環境和設計方法,以及FPGA的設計流程。在此基礎上,重點介紹了I
上傳時間: 2013-04-24
上傳用戶:ajaxmoon