磁芯電感器的諧波失真分析 摘 要:簡述了改進鐵氧體軟磁材料比損耗系數和磁滯常數ηB,從而降低總諧波失真THD的歷史過程,分析了諸多因數對諧波測量的影響,提出了磁心性能的調控方向。 關鍵詞:比損耗系數, 磁滯常數ηB ,直流偏置特性DC-Bias,總諧波失真THD Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033 Abstract: Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward. Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD 近年來,變壓器生產廠家和軟磁鐵氧體生產廠家,在電感器和變壓器產品的總諧波失真指標控制上,進行了深入的探討和廣泛的合作,逐步弄清了一些似是而非的問題。從工藝技術上采取了不少有效措施,促進了質量問題的迅速解決。本文將就此熱門話題作一些粗淺探討。 一、 歷史回顧 總諧波失真(Total harmonic distortion) ,簡稱THD,并不是什么新的概念,早在幾十年前的載波通信技術中就已有嚴格要求<1>。1978年郵電部公布的標準YD/Z17-78“載波用鐵氧體罐形磁心”中,規定了高μQ材料制作的無中心柱配對罐形磁心詳細的測試電路和方法。如圖一電路所示,利用LC組成的150KHz低通濾波器在高電平輸入的情況下測量磁心產生的非線性失真。這種相對比較的實用方法,專用于無中心柱配對罐形磁心的諧波衰耗測試。 這種磁心主要用于載波電報、電話設備的遙測振蕩器和線路放大器系統,其非線性失真有很嚴格的要求。 圖中 ZD —— QF867 型阻容式載頻振蕩器,輸出阻抗 150Ω, Ld47 —— 47KHz 低通濾波器,阻抗 150Ω,阻帶衰耗大于61dB, Lg88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB Ld88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB FD —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次諧波衰耗b3(0)≥91 dB, DP —— Qp373 選頻電平表,輸入高阻抗, L ——被測無心罐形磁心及線圈, C ——聚苯乙烯薄膜電容器CMO-100V-707APF±0.5%,二只。 測量時,所配用線圈應用絲包銅電磁線SQJ9×0.12(JB661-75)在直徑為16.1mm的線架上繞制 120 匝, (線架為一格) , 其空心電感值為 318μH(誤差1%) 被測磁心配對安裝好后,先調節振蕩器頻率為 36.6~40KHz, 使輸出電平值為+17.4 dB, 即選頻表在 22′端子測得的主波電平 (P2)為+17.4 dB,然后在33′端子處測得輸出的三次諧波電平(P3), 則三次諧波衰耗值為:b3(+2)= P2+S+ P3 式中:S 為放大器增益dB 從以往的資料引證, 就可以發現諧波失真的測量是一項很精細的工作,其中測量系統的高、低通濾波器,信號源和放大器本身的三次諧波衰耗控制很嚴,阻抗必須匹配,薄膜電容器的非線性也有相應要求。濾波器的電感全由不帶任何磁介質的大空心線圈繞成,以保證本身的“潔凈” ,不至于造成對磁心分選的誤判。 為了滿足多路通信整機的小型化和穩定性要求, 必須生產低損耗高穩定磁心。上世紀 70 年代初,1409 所和四機部、郵電部各廠,從工藝上改變了推板空氣窯燒結,出窯后經真空罐冷卻的落后方式,改用真空爐,并控制燒結、冷卻氣氛。技術上采用共沉淀法攻關試制出了μQ乘積 60 萬和 100 萬的低損耗高穩定材料,在此基礎上,還實現了高μ7000~10000材料的突破,從而大大縮短了與國外企業的技術差異。當時正處于通信技術由FDM(頻率劃分調制)向PCM(脈沖編碼調制) 轉換時期, 日本人明石雅夫發表了μQ乘積125 萬為 0.8×10 ,100KHz)的超優鐵氧體材料<3>,其磁滯系數降為優鐵
上傳時間: 2014-12-24
上傳用戶:7891
PCB設計問題集錦 問:PCB圖中各種字符往往容易疊加在一起,或者相距很近,當板子布得很密時,情況更加嚴重。當我用Verify Design進行檢查時,會產生錯誤,但這種錯誤可以忽略。往往這種錯誤很多,有幾百個,將其他更重要的錯誤淹沒了,如何使Verify Design會略掉這種錯誤,或者在眾多的錯誤中快速找到重要的錯誤。 答:可以在顏色顯示中將文字去掉,不顯示后再檢查;并記錄錯誤數目。但一定要檢查是否真正屬于不需要的文字。 問: What’s mean of below warning:(6230,8330 L1) Latium Rule not checked: COMPONENT U26 component rule.答:這是有關制造方面的一個檢查,您沒有相關設定,所以可以不檢查。 問: 怎樣導出jop文件?答:應該是JOB文件吧?低版本的powerPCB與PADS使用JOB文件。現在只能輸出ASC文件,方法如下STEP:FILE/EXPORT/選擇一個asc名稱/選擇Select ALL/在Format下選擇合適的版本/在Unit下選Current比較好/點擊OK/完成然后在低版本的powerPCB與PADS產品中Import保存的ASC文件,再保存為JOB文件。 問: 怎樣導入reu文件?答:在ECO與Design 工具盒中都可以進行,分別打開ECO與Design 工具盒,點擊右邊第2個圖標就可以。 問: 為什么我在pad stacks中再設一個via:1(如附件)和默認的standardvi(如附件)在布線時V選擇1,怎么布線時按add via不能添加進去這是怎么回事,因為有時要使用兩種不同的過孔。答:PowerPCB中有多個VIA時需要在Design Rule下根據信號分別設置VIA的使用條件,如電源類只能用Standard VIA等等,這樣操作時就比較方便。詳細設置方法在PowerPCB軟件通中有介紹。 問:為什么我把On-line DRC設置為prevent..移動元時就會彈出(圖2),而你們教程中也是這樣設置怎么不會呢?答:首先這不是錯誤,出現的原因是在數據中沒有BOARD OUTLINE.您可以設置一個,但是不使用它作為CAM輸出數據. 問:我用ctrl+c復制線時怎設置原點進行復制,ctrl+v粘帖時總是以最下面一點和最左邊那一點為原點 答: 復制布線時與上面的MOVE MODE設置沒有任何關系,需要在右鍵菜單中選擇,這在PowerPCB軟件通教程中有專門介紹. 問:用(圖4)進行修改線時拉起時怎總是往左邊拉起(圖5),不知有什么辦法可以輕易想拉起左就左,右就右。答: 具體條件不明,請檢查一下您的DESIGN GRID,是否太大了. 問: 好不容易拉起右邊但是用(圖6)修改線怎么改怎么下面都會有一條不能和在一起,而你教程里都會好好的(圖8)答:這可能還是與您的GRID 設置有關,不過沒有問題,您可以將不需要的那段線刪除.最重要的是需要找到布線的感覺,每個軟件都不相同,所以需要多練習。 問: 尊敬的老師:您好!這個圖已經畫好了,但我只對(如圖1)一種的完全間距進行檢查,怎么錯誤就那么多,不知怎么改進。請老師指點。這個圖在附件中請老師幫看一下,如果還有什么問題請指出來,本人在改進。謝!!!!!答:請注意您的DRC SETUP窗口下的設置是錯誤的,現在選中的SAME NET是對相同NET進行檢查,應該選擇NET TO ALL.而不是SAME NET有關各項參數的含義請仔細閱讀第5部教程. 問: U101元件已建好,但元件框的拐角處不知是否正確,請幫忙CHECK 答:元件框等可以通過修改編輯來完成。問: U102和U103元件沒建完全,在自動建元件參數中有幾個不明白:如:SOIC--》silk screen欄下spacing from pin與outdent from first pin對應U102和U103元件應寫什么數值,還有這兩個元件SILK怎么自動設置,以及SILK內有個圓圈怎么才能畫得與該元件參數一致。 答:Spacing from pin指從PIN到SILK的Y方向的距離,outdent from first pin是第一PIN與SILK端點間的距離.請根據元件資料自己計算。
上傳時間: 2013-10-07
上傳用戶:comer1123
Arduino 是一塊基于開放原始代碼的Simple i/o 平臺,并且具有使用類似java,C 語言的開發環境。讓您可以快速 使用Arduino 語言與Flash 或Processing…等軟件,作出互動作品。Arduino 可以使用開發完成的電子元件例如Switch 或Sensors 或其他控制器、LED、步進電機或其他輸出裝置。Arduino 也可以獨立運作成為一個可以跟軟件溝通的平臺,例如說:flash processing Max/MSP VVVV 或其他互動軟件… Arduino 開發IDE界面基于開放原始碼原則,可以讓您免費下載使用開發出更多令人驚奇的互動作品。 什么是Roboduino? DFRduino 與Arduino 完全兼容,只是在原來的基礎上作了些改進。Arduino 的IO 使用的孔座,做互動作品需要面包板和針線搭配才能進行,而DFRduino 的IO 使用針座,使用我們的杜邦線就可以直接把各種傳感器連接到DFRduino 上。 特色描述 1. 開放原始碼的電路圖設計,程式開發界面免費下載,也可依需求自己修改!! 2. DFRduino 可使用ISP 下載線,自我將新的IC 程序燒入「bootloader」; 3. 可依據官方電路圖,簡化DFRduino 模組,完成獨立云作的微處理控制器; 4. 可簡單地與傳感器、各式各樣的電子元件連接(如:紅外線,超聲波,熱敏電阻,光敏電阻,伺服電機等); 5. 支援多樣的互動程式 如: Flash,Max/Msp,VVVV,PD,C,Processing 等; 6. 使用低價格的微處理控制器(ATMEGA168V-10PI); 7. USB 接口,不需外接電源,另外有提供9VDC 輸入接口; 8. 應用方面,利用DFRduino,突破以往只能使用滑鼠,鍵盤,CCD 等輸入的裝置的互動內容,可以更簡單地達成單人或多人游戲互動。 性能描述 1. Digital I/O 數字輸入/輸出端共 0~13。 2. Analog I/O 模擬輸入/輸出端共 0~5。 3. 支持USB 接口協議及供電(不需外接電源)。 4. 支持ISP 下載功能。 5. 支持單片機TX/RX 端子。 6. 支持USB TX/RX 端子。 7. 支持AREF 端子。 8. 支持六組PWM 端子(Pin11,Pin10,Pin9,Pin6,Pin5,Pin3)。 9. 輸入電壓:接上USB 時無須外部供電或外部5V~9V DC 輸入。 10.輸出電壓:5V DC 輸出和3.3V DC 輸出 和外部電源輸入。 11.采用Atmel Atmega168V-10PI 單片機。 12.DFRduino 大小尺寸:寬70mm X 高54mm。 Arduino開發板圖片
上傳時間: 2014-01-14
上傳用戶:909000580
LT®1991提供了很多的功能,因而有可能是您必須保持一定庫存量的最後一款放大器。它不是一款應用受限的單用途差分或儀表放大器。
上傳時間: 2013-10-26
上傳用戶:18752787361
諸如電信設備、存儲模塊、光學繫統、網絡設備、服務器和基站等許多復雜繫統都采用了 FPGA 和其他需要多個電壓軌的數字 IC,這些電壓軌必須以一個特定的順序進行啟動和停機操作,否則 IC 就會遭到損壞。
上傳時間: 2014-12-24
上傳用戶:packlj
電路板裝配、PCB 布局和數字 IC 集成的進步造就了新一代的高密度安裝、高性能繫統。
上傳時間: 2013-10-17
上傳用戶:RQB123
大型 TFT-LCD 的功率需求量之大似乎永遠得不到滿足。電源必須滿足晶體管數目不斷增加和顯示器分辨率日益攀升的要求,並且還不能占用太大的板級空間。
上傳時間: 2014-12-24
上傳用戶:watch100
對於輸出電壓處於輸入電壓範圍之內 (這在鋰離子電池供電型應用中是一種很常見的情形) 的 DC/DC 轉換器設計,可供采用的傳統解決方案雖有不少,但迄今為止都不能令人非常滿意
上傳時間: 2013-11-19
上傳用戶:urgdil
LTM®4616 是一款雙路輸入、雙路輸出 DC/DC μModule™ 穩壓器,采用 15mm x 15mm x 2.8mm LGA 表面貼裝型封裝。由於開關控制器、MOSFET、電感器和其他支持元件均被集成在纖巧型封裝之內,因此只需少量的外部元件。
上傳時間: 2013-10-27
上傳用戶:頂得柱
模塊電源的電氣性能是通過一系列測試來呈現的,下列為一般的功能性測試項目,詳細說明如下: 電源調整率(Line Regulation) 負載調整率(Load Regulation) 綜合調整率(Conmine Regulation) 輸出漣波及雜訊(Ripple & Noise) 輸入功率及效率(Input Power, Efficiency) 動態負載或暫態負載(Dynamic or Transient Response) 起動(Set-Up)及保持(Hold-Up)時間 常規功能(Functions)測試 1. 電源調整率 電源調整率的定義為電源供應器于輸入電壓變化時提供其穩定輸出電壓的能力。測試步驟如下:于待測電源供應器以正常輸入電壓及負載狀況下熱機穩定后,分別于低輸入電壓(Min),正常輸入電壓(Normal),及高輸入電壓(Max)下測量并記錄其輸出電壓值。 電源調整率通常以一正常之固定負載(Nominal Load)下,由輸入電壓變化所造成其輸出電壓偏差率(deviation)的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 2. 負載調整率 負載調整率的定義為開關電源于輸出負載電流變化時,提供其穩定輸出電壓的能力。測試步驟如下:于待測電源供應器以正常輸入電壓及負載狀況下熱機穩定后,測量正常負載下之輸出電壓值,再分別于輕載(Min)、重載(Max)負載下,測量并記錄其輸出電壓值(分別為Vo(max)與Vo(min)),負載調整率通常以正常之固定輸入電壓下,由負載電流變化所造成其輸出電壓偏差率的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 3. 綜合調整率 綜合調整率的定義為電源供應器于輸入電壓與輸出負載電流變化時,提供其穩定輸出電壓的能力。這是電源調整率與負載調整率的綜合,此項測試系為上述電源調整率與負載調整率的綜合,可提供對電源供應器于改變輸入電壓與負載狀況下更正確的性能驗證。 綜合調整率用下列方式表示:于輸入電壓與輸出負載電流變化下,其輸出電壓之偏差量須于規定之上下限電壓范圍內(即輸出電壓之上下限絕對值以內)或某一百分比界限內。 4. 輸出雜訊 輸出雜訊(PARD)系指于輸入電壓與輸出負載電流均不變的情況下,其平均直流輸出電壓上的周期性與隨機性偏差量的電壓值。輸出雜訊是表示在經過穩壓及濾波后的直流輸出電壓上所有不需要的交流和噪聲部份(包含低頻之50/60Hz電源倍頻信號、高于20 KHz之高頻切換信號及其諧波,再與其它之隨機性信號所組成)),通常以mVp-p峰對峰值電壓為單位來表示。 一般的開關電源的規格均以輸出直流輸出電壓的1%以內為輸出雜訊之規格,其頻寬為20Hz到20MHz。電源實際工作時最惡劣的狀況(如輸出負載電流最大、輸入電源電壓最低等),若電源供應器在惡劣環境狀況下,其輸出直流電壓加上雜訊后之輸出瞬時電壓,仍能夠維持穩定的輸出電壓不超過輸出高低電壓界限情形,否則將可能會導致電源電壓超過或低于邏輯電路(如TTL電路)之承受電源電壓而誤動作,進一步造成死機現象。 同時測量電路必須有良好的隔離處理及阻抗匹配,為避免導線上產生不必要的干擾、振鈴和駐波,一般都采用雙同軸電纜并以50Ω于其端點上,并使用差動式量測方法(可避免地回路之雜訊電流),來獲得正確的測量結果。 5. 輸入功率與效率 電源供應器的輸入功率之定義為以下之公式: True Power = Pav(watt) = Vrms x Arms x Power Factor 即為對一周期內其輸入電壓與電流乘積之積分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.為功率因素(Power Factor),通常無功率因素校正電路電源供應器的功率因素在0.6~0.7左右,其功率因素為1~0之間。 電源供應器的效率之定義為為輸出直流功率之總和與輸入功率之比值。效率提供對電源供應器正確工作的驗證,若效率超過規定范圍,即表示設計或零件材料上有問題,效率太低時會導致散熱增加而影響其使用壽命。 6. 動態負載或暫態負載 一個定電壓輸出的電源,于設計中具備反饋控制回路,能夠將其輸出電壓連續不斷地維持穩定的輸出電壓。由于實際上反饋控制回路有一定的頻寬,因此限制了電源供應器對負載電流變化時的反應。若控制回路輸入與輸出之相移于增益(Unity Gain)為1時,超過180度,則電源供應器之輸出便會呈現不穩定、失控或振蕩之現象。實際上,電源供應器工作時的負載電流也是動態變化的,而不是始終維持不變(例如硬盤、軟驅、CPU或RAM動作等),因此動態負載測試對電源供應器而言是極為重要的。可編程序電子負載可用來模擬電源供應器實際工作時最惡劣的負載情況,如負載電流迅速上升、下降之斜率、周期等,若電源供應器在惡劣負載狀況下,仍能夠維持穩定的輸出電壓不產生過高激(Overshoot)或過低(Undershoot)情形,否則會導致電源之輸出電壓超過負載組件(如TTL電路其輸出瞬時電壓應介于4.75V至5.25V之間,才不致引起TTL邏輯電路之誤動作)之承受電源電壓而誤動作,進一步造成死機現象。 7. 啟動時間與保持時間 啟動時間為電源供應器從輸入接上電源起到其輸出電壓上升到穩壓范圍內為止的時間,以一輸出為5V的電源供應器為例,啟動時間為從電源開機起到輸出電壓達到4.75V為止的時間。 保持時間為電源供應器從輸入切斷電源起到其輸出電壓下降到穩壓范圍外為止的時間,以一輸出為5V的電源供應器為例,保持時間為從關機起到輸出電壓低于4.75V為止的時間,一般值為17ms或20ms以上,以避免電力公司供電中于少了半周或一周之狀況下而受影響。 8. 其它 在電源具備一些特定保護功能的前提下,還需要進行保護功能測試,如過電壓保護(OVP)測試、短路保護測試、過功保護等
上傳時間: 2013-10-22
上傳用戶:zouxinwang