同步電動機以其可調的功率因數和輸出轉矩對電網電壓波動不敏感等良好的運行性能,在大功率電氣傳動領域獨占螯頭。同步電機雖然有很多優點,但它的最大缺點是起動困難。目前,大功率同步電機的軟起動大多采用靜止變頻器起動方式,但由于變頻器多采用晶閘管作為功率器件從而要依靠電動機產生的反電勢才能自行關斷并且輔助設備較多。而一旦逆變器換流失敗就會導致電動機起動失敗。針對晶閘管不能自行關斷的缺點,本文研究了一種以IGBT做為變頻器功率器件的轉速開環恒壓頻比控制的起動方法。 @@ 首先,根據同步電動機的工作原理對同步電動機的起動特性進行了詳細分析,并對全壓異步起動方法進行了仿真研究,得出了起動過程中電動機相電流、電磁轉矩等參數的變化曲線。針對異步起動過程中定子繞組產生過大沖擊電流的問題,提出了逐級變頻的轉速開環恒壓頻比控制同步電動機軟起動方法。闡述了逐級變頻開環控制同步電動機軟起動的原理,即通過逐級改變變頻器輸出頻率使轉子轉速跟隨定子旋轉磁場轉速逐級升高至額定值。推導出起動過程中變頻器逐級變化的頻率與電動機轉動慣量、電磁轉矩等參數的關系式。通過對一臺同步電動機做工頻起動和低頻起動的仿真研究,證明了同步電動機在低頻下依靠同步電磁轉矩自行起動的可行性。通過計算轉子轉速達到相應同步轉速的時間來確定變頻器逐級升高的電壓頻率隨時間的變化規律。然后,在采用電壓型交直交變頻器作為同步電機變頻電源的基礎上,設計了恒壓頻比逐級變頻軟起動的控制方案,利用MATLAB/SIMULINK構建了轉速開環恒壓頻比控制同步電動機軟起動的數學模型,對同步電動機的起動過程進行仿真試驗,并且分別對空載起動和負載起動過程進行了分析。仿真結果驗證了轉速開環控制同步電動機軟起動的可行性。 @@ 針對同步電動機起動后的并網問題進行了理論分析,并研究了相應的并網控制方案。應用MATLAB/SIMULINK對并網過程進行仿真試驗,給出并網瞬間電網電壓、同步電機相電流等參數變化曲線,從而驗證了并網方案的可行性。 @@ 最后,對所做工作進行了總結,并展望了大功率同步電動機的軟起動技術。 @@關鍵詞:同步電動機;軟起動;變頻器;恒壓頻比
上傳時間: 2013-05-26
上傳用戶:assss
汽車從批量生產到現在已經有100多年的歷史,其中,車輛電子化、電動化取得了驚人的進展,伴隨而來的是汽車用電量的迅速增加。專家預計到2010年電氣方面功率會達到10kW,電流將會增加3倍以上,如不增加電流,最有效的方法是盡量提高汽車電源供電電壓。電壓最好能在人體安全電壓范圍(DC60V)以下,42V是一種解決辦法。采用42V電源,可以直接減小導線尺寸和實現輕量化,從而降低成本。 在新的42V電源系統中,采用42V/14V雙電壓方案,對目前的電氣系統沖擊較小,過渡平緩。本文在綜合國內外相關研究的基礎上,對42V/14V雙電壓電氣系統的技術發展以及現狀進行了較系統的研究。主要研究內容如下: 首先,本文分析了汽車電源升壓的原因,介紹了國內外的現狀。研究探討新型42V電源系統對汽車蓄電池的影響,介紹了混合動力車用蓄電池的特點,比較目前混合動力車用幾種蓄電池的方案。因為42V/14V雙電壓共存,存在多種直流電壓變換器,本文分析了DC/DC變換器的結構和原理,設計了高頻斬波型和二重軟開關兩種DC/DC變換器模塊方案。 其次,介紹了混合動力汽車42V一體化啟動發電機系統裝置的特點,敘述其工作原理和系統組成。提出了一種基于永磁同步電機ISG系統的設計方案。在對永磁同步電機理論研究的基礎上,本文完成了對永磁同步電機起動的實驗和調試。通過對實驗樣機做起動實驗,驗證了本文設計的ISG系統及電機的硬件驅動的可行性。 最后,汽車電源系統升壓會產生更高的瞬態高壓和更強的電磁干擾,本文簡要分析了其產生的原因,闡述了基本的抑制方法。 目前汽車電源系統由14V電源向42V電源發展已經是必然的趨勢。作為過渡階段,對42V/14V雙電壓系統的研究將會是汽車界最近時期的一個重要內容。42V汽車電源系統標準的實施,將對汽車電器和電子設備帶來巨大的沖擊,同時也會給整個汽車界帶來新一輪的電氣技術革命。
上傳時間: 2013-07-23
上傳用戶:wkchong
多電平逆變器中每個功率器件承受的電壓相對較低,因此可以用低耐壓功率器件實現高壓大容量逆變器,且采用多電平變換技術可以顯著提高逆變器輸出電壓的質量指標。因此,隨著功率器件的不斷發展,采用多電平變換技術將成為實現高壓大容量逆變器的重要途徑和方法。本文選取其中一種極具優勢的多電平拓撲結構一級聯多電平變頻器作為研究對象,完成了其拓撲結構、控制策略及測控系統的設計。 @@ 首先,對多電平變頻器的研究意義,國內外現狀進行了分析,比較了三種成熟拓撲結構的特點,得出了級聯型多電平變頻器的優點,從而將其作為研究對象。對比分析了四種調制策略,確定載波移相二重化的調制方法和恒壓頻比的控制策略,進行數學分析和理論仿真,得出了選擇的正確性及可行性。并指出了級聯單元個數與載波移相角的關系和調制比對輸出電壓的影響;完成了級聯變頻器數學模型的建立和死區效應的分析。 @@ 其次,完成了相關硬件的設計,包括DSP、CPLD、IPM的選型,系統電源的設計、檢測(轉速、電流、電壓、故障)電路的設計、通信電路的設計等。用Labwindows/CVI實現了上位機界面的編寫,實現了開關機、設定轉速、通信配置、電壓電流轉速檢測、電流軟件濾波、諧波分析。編寫了下位機DSP的串口通信、AD轉換、轉速檢測(QEP)以及部分控制程序。 @@ 最后,在實驗臺上完成硬件和軟件的調試,成功的實現了變頻器載波移相SPWM的多電平輸出,并驅動異步電機進行了空載變頻試驗,測控界面能準確的與下位機進行通信,快捷的給定各種控制命令,并能實時的顯示變頻器的輸出頻率、輸出電壓和輸出電流,為實驗調試增加了方便性,提高了工作效率。 @@關鍵詞:級聯多電平逆變器;載波移相;IPM;DSP;Labwindows/CVI;測控界面
上傳時間: 2013-04-24
上傳用戶:米卡
隨著功率開關器件的進步,大量的電力電子變流裝置在國民經濟各領域獲得了廣泛應用,但是這些變流裝置大部分都需要整流環節。傳統的不控整流或相控整流存在網側功率因數低、電流畸變嚴重等缺點。PWM整流器可實現正弦的網側電流、單位或可調的功率因數、能量的雙向流動,是一種真正意義上的“綠色環保”電力電子裝置。PWM整流器可分為電壓型PWM整流器(Voltage—SourceRectifier,VSR)和電流型PWM整流器(Current—SourceRectifier,CSR)。CSR具有直接控制輸出電流、動態響應快、限流能力強等特點,在一些中、大功率應用場合,較之VSR,在經濟和技術上更具優勢。 本文針對電網電壓平衡、不平衡情況、多模塊直接并聯幾個方面,對三相CSR及其控制策略展開了深入研究,論文的主要工作和取得的創新性成果如下: 1、在電網電壓平衡情況下,提出了三相CSR的直流電流非線性解耦控制策略和交流電流非線性解耦控制策略,實現了有功功率和無功功率的獨立、解耦控制,獲得了線性的動態響應。直流電流非線性解耦控制策略是直流電流控制和網側無功電流控制并行的控制策略,具有較快的直流電流響應速度;交流電流非線性解耦控制策略是直流電流(或電壓)控制和網側電流控制級聯的控制策略,具有結構簡單,便于獨立設計直流和交流控制器的特點。 2、考慮了電網電壓不平衡和濾波器參數三相不對稱的情況,提出了基于瞬時有功功率調節的三相CSR的不平衡補償策略,消除了直流電流脈動分量,實現了網側可控的功率因數和正弦的交流電流;提出了基于滑模控制的交流電流控制策略,簡化了控制器結構,實現了對網側電流的無差跟蹤。 3、建立了多模塊直接并聯CSR的環流模型;對任一并聯模塊,提出了總直流電流控制器外加2個均流控制器的直流側控制器結構,保證了流過各模塊上、下橋臂的電流均相等,并且各模塊僅共享總直流電流控制器輸出信號,最大可能地保證了各模塊控制的獨立性。 4、建立了三相CSR實驗系統,進行了初步的實驗研究。
上傳時間: 2013-04-24
上傳用戶:極客
隨著電力電子技術的發展,各類電力電子裝置應運而生,這些產品在出廠前需要根據不同的需要進行相應的測試和校驗。傳統的負載測試存在著能耗大、靈活性差等諸多缺點,已經越來越不能滿足各種測試場合的要求,特別是一些要求用動態變化的負載、非線性負載、具有負阻特性的負載以及有源負載等測試場合。因此針對這一問題,本文利用電力電子技術結合計算機技術、控制技術等設計了一種通用的交流電子負載模擬裝置,以滿足各種測試場合的要求。 @@ 交流電子負載是一種可以模擬真實負載的電力電子裝置,它不但可以模擬傳統的線性負載,也可以模擬各種非線性負載、有源負載等其他形式的負載。目前國內外對電子負載的研究還不成熟,有些是使交流電源按照一定的功率放電,但是輸出電流卻與真實負載測試下的電流有較大的差別;而有些雖然能夠準確控制電源的放電電流取得和真實負載一樣的效果,但試驗電能完全被消耗掉,造成很大的浪費。本文研究的新型交流電子負載克服了以上電子負載方案的缺點,可以滿足各種試驗場合的測試需求,能夠在很大程度上減少能量浪費,豐富試驗樣式且節約試驗成本。 @@ 本文分析了能饋式交流電子負載的模擬原理,確定了采用中間直流環節的交-直-交主電路結構,其一端接待測交流電源,另一端接低壓交流電網。前級負載模擬環節和后級能量回饋環節均采用可四象限運行的電壓型PWM(Pulse Width Modulation)變換器。負載模擬環節直接與待測電源連接,采用電流滯環瞬時值比較方式,使電源輸出的實際電流信號準確、快速的跟蹤其指令電流信號值,使得電子負載對待測電源呈現設定的負載形式,完成電子負載的模擬功能;能量回饋環節與電網連接,通過控制輸出電流與電網電壓同頻、同相位,實現試驗電能的單位功率因數回饋電網的目的,變換器的控制采用常規的雙閉環控制方式,電流內環控制實際電流跟蹤指令值的變化,電壓外環通過控制輸出電流的大小使直流側母線電壓穩定為設定指令值。 @@ 電子負載系統在負載模擬部分通過人機接口設定具體負載形式和負載屬性,為了更加準確快速的得到電流指令信號值,文中采用更加直接的數值計算方 法,由數字信號處理器實時計算出該給定負載模式下的指令電流值。使用交流小信號分析法得到了系統的頻域方塊圖,并對主電路元件參數以及調節器進行了優化設計。針對大功率開關管開關頻率存在的限制,本文提出了幾種提高電流跟蹤精度的改進方法,取得了良好的效果。整個系統在PSIM平臺上進行了不同工作模式下的仿真,仿真結果表明方案切實可行。最后依據仿真方案設計基于TMS320F2812的控制系統和功率電路,使用PROTEL軟件進行了原理圖的繪制。@@關鍵詞:電子負載;能量回饋;電壓型變換器;滯環PWM電流控制;雙閉環;PWM整流器
上傳時間: 2013-05-26
上傳用戶:saharawalker
數字技術、電力電子技術以及控制論的進步推動弧焊電源從模擬階段發展到數字階段。數字化逆變弧焊電源不僅可靠性高、控制精度高而且容易大規模集成、方便升級,成為焊機的發展方向,推動了焊接產業的巨大發展。針對傳統的埋弧焊電源存在的體積大、控制電路復雜、可靠性差等問題,本文提出了雙逆變結構的焊機主電路實現方法和基于“MCU+DSP”的數字化埋弧焊控制系統的設計方案。 本文詳細介紹了埋弧焊的特點和應用,從主電源、控制系統兩個方面闡述了數字化逆變電源的發展歷程,對數字化交流方波埋弧焊的國內外研究現狀進行了深入探討,設計了雙逆變結構的數字化焊接系統,實現了穩定的交流方波輸出。 根據埋弧焊的電弧特點和交流方波的輸出特性,本文采用雙逆變結構設計焊機主電路,一次逆變電路選用改進的相移諧振軟開關,二次逆變電路選用半橋拓撲形式,并研究了兩次逆變過程的原理和控制方式,進行了相關參數計算。根據主電路電路的設計要求,電流型PWM控制芯片UC3846用于一次逆變電路的控制并抑制變壓器偏磁,選擇集成驅動芯片EXB841作為二次逆變電路的驅動。 本課題基于“MCU+DSP”的雙機主控系統來實現焊接電源的控制。其中主控板單片機ATmega64L主要負責送絲機和行走小車的速度反饋及閉環PI運算、電機PWM斬波控制以及過壓、過流、過熱等保護電路的控制。DSP芯片MC56F8323則主要負責焊接電流、焊接電壓的反饋和閉環PI運算以及控制焊接時序,以確保良好的電源外特性輸出。外部控制箱通過按鍵、旋轉編碼器進行焊接參數和焊接狀態的給定,預置和顯示各種焊接參數,快速檢測焊機狀態并加以保護。 主控板芯片之間通過SPI通訊,外部控制箱和主控板之間則通過RS—485協議交換數據。通過軟件設計,實現焊接參數的PI調節,精確控制了焊接過程,并進行了抗干擾設計,解決了影響數字化埋弧焊電源穩定運行的電磁兼容問題。 系統分析了交流方波參數的變化對焊接效果的影響,通過對焊接電流、焊接電壓的波形分析,證明了本課題設計的埋弧焊電源能夠精確控制引弧、焊接、 收弧等焊接時序,并可以有效抑制功率開關器件的過流和變壓器的偏磁問題,取得了良好的焊接效果。 最后,對數字化交流方波埋弧焊的控制系統和焊接試驗進行了總結,分析了系統存在的問題和不足,并指出了新的研究方向。 關鍵詞:埋弧焊;交流方波;數字化;逆變;軟開關技術
上傳時間: 2013-04-24
上傳用戶:kjgkadjg
在能源枯竭與環境污染問題日益嚴重的今天,新能源的開發與利用愈來愈受到重視。太陽能是當前世界上最清潔、最現實、最有大規模開發利用前景的可再生能源之一。其中太陽能光伏利用受到世界各國的普遍關注。而太陽能光伏并網發電是太陽能光伏利用的主要發展趨勢,必將得到快速的發展。在并網型光伏發電系統中,逆變器是系統中最末一級或唯一一級能量變換裝置,其效率的高低、可靠性的好壞將直接影響整個并網型系統的性能和投資。按照不同的標準光伏并網逆變器的拓撲結構分為很多種,本文主要研究單相非隔離型光伏并網逆變器。 文章首先概述了光伏并網系統的發展情況并分析了當前國際金融危機對光伏產業的影響。其次,分析了當前國際市場上主要的光伏逆變器產品的特點,概括了光伏并網系統中光伏陣列的配置。隨后,本文以單相全橋拓撲為模型分析了非隔離型并網系統在采用不同的PWM調制策略下的共模電流,指出了抑制共模電流需滿足的條件。對于全橋和半橋拓撲,分析了不同的濾波方式對共模電流抑制的影響。總結了能夠抑制共模電流的實用電路拓撲并提出了一種能夠抑制共模電流的新拓撲。對不同拓撲的損耗情況在文章中進行了比較。 對于非隔離型并網系統中的逆變器易向電網注入直流分量的問題,首先分析了直流分量產生的原因及其導致變壓器產生的直流偏磁飽和現象。在此基礎上,總結了抑制直流分量的方法,指出了半橋拓撲能夠抑制直流分量。對于并網電流的控制,工程上通常采用比例積分控制器,而比例積分控制器在理論上無法實現無靜差控制,因此,本文對能夠實現無靜差控制的比例諧振控制器進行了簡要分析。最后,在非隔離型1.5kW實驗平臺上對共模電流和直流分量的抑制方法進行了驗證。
上傳時間: 2013-07-30
上傳用戶:科學怪人
隨著低壓供電系統中感性負荷越來越多,電網對無功電流的需求量急劇增加,為了提高系統供電質量和供電效率,必須對電網進行無功補償。晶閘管投切電容器(TSC)一種簡單易行的補償措施,并已得到廣泛應用。但是長期以來無功補償裝置中的電容器投切開關存在功能單一、使用壽命短、開關沖擊大等不足,這些不足嚴重制約了補償裝置的發展。因此開發大容量快速的集多種功能于一體的電子開關功率單元將是晶閘管投切電容器(TSC)技術中長期研究的主要內容,具有很高的實用價值。 首先,本文回顧了投切開關的發展歷史,并指出它們存在的優點和弊端。闡述了晶閘管投切電容器(TSC)的基本工作原理及主電路的組成和實現手段。 其次,提出功率單元的概念,并介紹了它的組成、功能和作用、對功率單元各個組成部分進行研究,主要包括根據系統電壓和電流選擇晶閘管型號、根據TSC無過渡過程原理的分析來設計過零觸發模塊、利用補償電容上的工作電壓波形設計多功能卡上的工作指示電路、故障檢測電路,根據TSC的保護特點將溫度開關串入到控制信號和冷卻風扇電路,在溫度過高時起到對功率單元的保護作用。然后在理論及設計參數的基礎上制造功率單元。在已有的TSC補償裝置上對功率單元的性能進行實驗,實驗結果表明,論文所設計功率單元能很好的實現投切電容器的作用,還實現各種保護和顯示功能,提高效率和補償效果。 最后,系統地闡述了功率單元作為集成化開關模塊在無功補償領域的優越性,并指出設計中需要完善的地方。
上傳時間: 2013-07-19
上傳用戶:許小華
蓄電池組已越來越廣泛地應用于交通運輸、電力、通信等諸多領域和部門,其壽命直接關系到能源的有效利用以及相應系統的整體壽命、可靠性和成本。本課題從提高電池壽命的角度研究串聯蓄電池組的充電問題,基于前人使用磁放大器作后級調整的基礎上,提出了一種新穎的基于開關管MOSFET后級調整和高頻母線的蓄電池組分布式單體充電方法。所有二次側電路通過高頻母線的形式共用一個一次側電路;在兼顧效率、體積和成本的前提下有效的解決了串聯蓄電池組的充電不均衡問題。 論文對采用雙管正激拓撲的高頻母線產生電路的設計給出了說明;同時也介紹了幾種后級調整方法及各自優缺點。針對后級調整中的同步問題,提出了幾種產生同步鋸齒波的解決方案。最后利用同步脈沖產生電路,采用最常見的UC3843芯片,產生穩定可靠的同步鋸齒波,實現后級調整開關動作與母線方波電壓的同步。并且針對多路后級調整場合下,采取措施減小了母線電壓毛刺,同時也改善了電流采樣波形。 論文設計了一套單體3500mAh、3.7V鋰離子電池組的單體獨立充電器,以雙管正激電路為原邊電路作為主模塊,次級是以MOSFET作后級調整電路實現充電功能作為充電電路模塊。試驗中采用了四個充電電路模塊,同時對四個鋰離子電池單體分別獨立充電。充電電路模塊中,通過控制MOFET開關,可實現鋰電池的恒流、恒壓充電和滿充切斷,充電電壓和充電電流可精確控制在1%以內。該充電電路并能顯示電池充電狀態,并在單體充電電路間傳遞充電狀態信號,最后反饋給母線電路以控制母線電壓輸出的開通與關斷。特別指出的是該電路的過放電檢測功能,是直接利用電池自身電壓來檢測得出電池自身是否處于過放電狀態判定信號,并在充電模塊間傳遞,最后得出蓄電池組過放電判定信號。整機有較低的待機功耗,并均使用了低成本器件,進一步降低了成本。 論文給出了詳細的設計過程,最后通過實驗將該方案與串聯充電方案比較,驗證了該充電方案的可靠性與優越性。
上傳時間: 2013-04-24
上傳用戶:木末花開
使用二極管和晶閘管實現的不控和可控整流器,電流波形畸變給電網注入大量諧波和無功功率,造成嚴重的電網污染。隨著電力電子技術的發展,人們開始研究PWM整流技術。電壓型PWM整流器具有交流側電流低諧波、高功率因數、直流電壓輸出穩定等諸多優點,因此,成為當前電力電子領域研究的熱點課題之一。由于PWM整流器具有以上優點,在電力系統有源濾波、無功補償、潮流控制、太陽能發電以及交直流傳動系統等領域,具有越來越廣闊的應用前景。本論文對三相PWM整流器進行了研究,主要完成以下工作: 首先,對PWM整流器的工作原理做了介紹,給出了三相PWM整流器的拓撲結構,分析了PWM整流器的換流過程,給出了PWM整流器的數學模型,對交流側電感和直流側電容進行了設計。 其次,對電流滯環控制、電流PI控制、空間電壓矢量控制三種控制方法分別進行了介紹、模型搭建和仿真分析。在直流電壓的控制中加入分段PI控制,使超調量和穩態誤差限制在很小的范圍以內。在起動過程中串接入限流電阻,使起動電流限定允許范圍以內。 最后,在進行了以上三種控制方式仿真后,針對電壓空間矢量控制存在的電流誤差問題,采用電流超前給定策略和基于旋轉坐標系的空間電壓矢量控制策略解決了電流誤差問題。 仿真結果表明,論文所設計的三相電壓型PWM整流器實現了高功率因數運行,實現了直流電壓的穩定控制,解決了傳統意義上的整流電路中存在諧波含量大、功率因數低等問題,具有良好的工程實用價值。
上傳時間: 2013-06-16
上傳用戶:胡佳明胡佳明