與傳統(tǒng)的徑向磁通圓柱式電機相比,軸向磁通的盤式無鐵心永磁同步電機有著許多明顯的優(yōu)點:其結構較為簡單,加工及裝配費用低,電機運行可靠,不需勵磁電流,提高了電機的效率和功率密度。盤式電機永磁化是一種發(fā)展趨勢,而稀土材料是其首選的永磁材料。我國已研制出盤式永磁同步電機,但還處于試制階段,要實現(xiàn)產(chǎn)品化,還有許多研究課題亟待解決。 本文主要針對該電機的氣隙磁密進行分析,對影響氣隙磁密的各種因素展開了研究。具體內(nèi)容如下: 1) 回顧了永磁電機的研究歷史、發(fā)展現(xiàn)狀和主要應用,對永磁材料的性能及選取、聚磁技術、電機磁場計算所需理論和有限元軟件進行了介紹。 2) 將電機內(nèi)的電磁場、有限元軟件和盤式無鐵心永磁電機特殊結構相結合,設計出了近二十個有限元計算程序,組成一個針對盤式無鐵心永磁同步電機的計算軟件包,由這些計算程序出發(fā),對盤式無鐵心永磁同步電機進行一系列仿真分析計算。 在繪制氣隙磁密三維分布圖時,由于有限元軟件在繪圖方面的限制,需要將氣隙磁密數(shù)據(jù)從有限元軟件中導出到文本文件,再由其它數(shù)學工具進行氣隙磁密的三維圖形繪制。在這一過程中由于導出數(shù)據(jù)格式與繪圖工具所需數(shù)據(jù)格式不能兼容,還需要對導出數(shù)據(jù)進行處理。由于有限元軟件導出的數(shù)據(jù)量很大,如果對這些數(shù)據(jù)進行人工整理將增加大量的工作量,所以作者在研究過程中,針對導出數(shù)據(jù)的特點編寫了一個Vb數(shù)據(jù)處理程序,使數(shù)據(jù)處理工作得到大大簡化。 3) 在上述建立的軟件包的基礎上,對基于Halbach陣列的盤式無鐵心永磁同步電機進行了一系列系統(tǒng)分析,其中包括三維開域磁場分析、永磁體厚度對電機氣隙磁密的影響及分析、永磁體寬度變化時氣隙磁場分析、采用不同角度Halbach陣列時的氣隙磁密分析、不同半徑處氣隙磁密分析,為在電機設計過程中永磁體的設計提供了依據(jù)。 4) 在對盤式無鐵心永磁同步電機磁場進行詳盡的分析的基礎之上,本文提出了對該電機的新設計方案,并就此方案進行了建模分析,結果表明,此新方案所得到的氣隙磁密比原結構的氣隙磁密更為理想。此外,還對新模型從定性的角度進行了渦流損耗分析,分析表明其結構有利于減小渦流損耗。
上傳時間: 2013-04-24
上傳用戶:牧羊人8920
高速電機由于轉速高、體積小、功率密度高,在渦輪發(fā)電機、渦輪增壓器、高速加工中心、飛輪儲能、電動工具、空氣壓縮機、分子泵等許多領域得到了廣泛的應用。永磁無刷直流電機由于效率高、氣隙大、轉子結構簡單,因此特別適合高速運行。高速永磁無刷直流電機是目前國內(nèi)外研究的熱點,其主要問題在于:(1)轉子機械強度和轉子動力學;(2)轉子損耗和溫升。本文針對高速永磁無刷直流電機主要問題之一的轉子渦流損耗進行了深入分析。轉子渦流損耗是由定子電流的時間和空間諧波以及定子槽開口引起的氣隙磁導變化所產(chǎn)生的。首先通過優(yōu)化定子結構、槽開口和氣隙長度的大小來降低電流空間諧波和氣隙磁導變化所產(chǎn)生的轉子渦流損耗;通過合理地增加繞組電感以及采用銅屏蔽環(huán)的方法來減小電流時間諧波引起的轉子渦流損耗。其次對轉子充磁方式和轉子動力學進行了分析。最后制作了高速永磁無刷直流電機樣機和控制系統(tǒng),進行了空載和負載實驗研究。論文主要工作包括: 一、采用解析計算和有限元仿真的方法研究了不同的定子結構、槽開口大小、以及氣隙長度對高速永磁無刷直流電機轉子渦流損耗的影響。對于2極3槽集中繞組、2極6槽分布疊繞組和2極6槽集中繞組的三臺電機的定子結構進行了對比,利用傅里葉變換,得到了分布于定子槽開口處的等效電流片的空間諧波分量,然后采用計及轉子集膚深度和渦流磁場影響的解析模型計算了轉子渦流損耗,通過有限元仿真對解析計算結果加以驗證。結果表明:3槽集中繞組結構的電機中含有2次、4次等偶數(shù)次空間諧波分量,該諧波分量在轉子中產(chǎn)生大量的渦流損耗。采用有限元仿真的方法研究了槽開口和氣隙長度對轉子渦流損耗的影響,在空載和負載狀態(tài)下的研究結果均表明:隨著槽開口的增加或者氣隙長度的減小,轉子損耗隨之增加。因此從減小高速永磁無刷電機轉子渦流損耗的角度考慮,2極6槽的定子結構優(yōu)于2極3槽結構。 二、高速永磁無刷直流電機額定運行時的電流波形中含有大量的時間諧波分量,其中5次和7次時間諧波分量合成的電樞磁場以6倍轉子角速度相對轉子旋轉,11次和13次時間諧波分量合成的電樞磁場以12倍轉子角速度相對轉子旋轉,這些諧波分量與轉子異步,在轉子保護環(huán)、永磁體和轉軸中產(chǎn)生大量的渦流損耗,是轉子渦流損耗的主要部分。首先研究了永磁體分塊對轉子渦流損耗的影響,分析表明:永磁體的分塊數(shù)和透入深度有關,對于本文設計的高速永磁無刷直流電機,當永磁體分塊數(shù)大于12時,永磁體分塊才能有效地減小永磁體中的渦流損耗;反之,永磁體分塊會使永磁體中的渦流損耗增加。為了提高轉子的機械強度,在永磁體表面通常包裹一層高強度的非磁性材料如鈦合金或者碳素纖維等。分析了不同電導率的包裹材料對轉子渦流損耗的影響。然后利用渦流磁場的屏蔽作用,在轉子保護環(huán)和永磁體之間增加一層電導率高的銅環(huán)。有限元分析表明:盡管銅環(huán)中會產(chǎn)生渦流損耗,但正是由于銅環(huán)良好的導電性,其產(chǎn)生的渦流磁場抵消了氣隙磁場的諧波分量,使永磁體、轉軸以及保護環(huán)中的損耗顯著下降,整體上降低了轉子渦流損耗。分析了不同的銅環(huán)厚度對轉子渦流損耗的影響,研究表明轉子各部分的渦流損耗隨著銅屏蔽環(huán)厚度的增加而減小,當銅環(huán)的厚度達到6次時間諧波的透入深度時,轉子損耗減小到最小。 三、對于給定的電機尺寸,設計了兩臺電感值不同的高速永磁無刷直流電機,通過研究表明:電感越大,電流變化越平緩,電流的諧波分量越低,轉子渦流損耗越小,因此通過合理地增加繞組電感能有效的降低轉子渦流損耗。 四、研究了高速永磁無刷直流電機的電磁設計和轉子動力學問題。對比分析了平行充磁和徑向充磁對高速永磁無刷直流電機性能的影響,結果表明:平行充磁優(yōu)于徑向充磁。設計并制作了兩種不同結構的轉子:單端式軸承支撐結構和兩端式軸承支撐結構。對兩種結構進行了轉子動力學分析,實驗研究表明:由于轉子設計不合理,單端式軸承支撐結構的轉子轉速達到40,000rpm以上時,保護環(huán)和定子齒部發(fā)生了摩擦,破壞了轉子動平衡,導致電機運行失敗,而兩端式軸承支撐結構的轉子成功運行到100,000rpm以上。 五、最后制作了平行充磁的高速永磁無刷直流電機樣機和控制系統(tǒng),進行了空載和負載實驗研究。對比研究了PWM電流調(diào)制和銅屏蔽環(huán)對轉子損耗的影響,研究表明:銅屏蔽環(huán)能有效的降低轉子渦流損耗,使轉子損耗減小到不加銅屏蔽環(huán)時的1/2;斬波控制會引入高頻電流諧波分量,使得轉子渦流損耗增加。通過計算繞組反電勢系數(shù)的方法,得到了不同控制方式下帶銅屏蔽環(huán)和不帶銅屏蔽環(huán)轉子永磁體溫度。采用簡化的暫態(tài)溫度場有限元模型分析了轉子溫升,有限元分析和實驗計算結果基本吻合,驗證了銅屏蔽環(huán)的有效性。
上傳時間: 2013-05-18
上傳用戶:zl123!@#
電子式互感器與傳統(tǒng)電磁式互感器相比,在帶寬、絕緣和成本等方面具有優(yōu)勢,因而代表了高電壓等級電力系統(tǒng)中電流和電壓測量的一種極具吸引力的發(fā)展方向。隨著信息技術的發(fā)展和電力市場中競爭機制的形成,電子式互感器成為人們研究的熱點;越來越多的新技術被引入到電子式互感器設計中,以提高其工作可靠性,降低運行總成本,減小對生態(tài)環(huán)境的壓力。本文圍繞電子式互感器實用化中的關鍵技術而展開理論與實驗研究,具體包括新型傳感器、雙傳感器的數(shù)據(jù)融合算法、數(shù)字接口、組合式電源、低功耗技術和自監(jiān)測功能的實現(xiàn)等。 目前電子式電流互感器(ECT)大多數(shù)采用單傳感器開環(huán)結構,對每個環(huán)節(jié)的精度和可靠性的要求都很高,嚴重制約了ECT整體性能的提高,影響其實用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數(shù)字積分器,在此基礎上設計了一種基于LPCT和PCB空心線圈的組合結構的新型電流傳感器。該結構具有并聯(lián)的特點,結合了這兩種互感器的優(yōu)點,采用數(shù)據(jù)融合算法來處理兩路信號,實現(xiàn)高精度測量和提高系統(tǒng)可靠性,并探索出辨別LPET飽和的新方法。試驗和仿真結果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達到IEC 60044-8標準中關于測量(幅值誤差)、保護(復合誤差)和暫態(tài)響應(峰值)的準確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結構和輸出信號等方面與傳統(tǒng)的電壓互感器有很大不同,本文設計了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗研究與計算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結果表明,設計的10kV精密電阻分壓器的準確度滿足IEC 60044-7標準要求,可達0.2級。 電子式互感器的關鍵技術之一是內(nèi)部的數(shù)字化以及其標準化接口,本文以10kV組合型電子式互感器為對象設計了一種實用化的數(shù)字系統(tǒng)。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數(shù)據(jù)融合算法的LPCT和PCB空心線圈的組合結構。本文首先解決了互感器間的同步與傳感器間的內(nèi)部同步問題,進而依照IEC61850-9-1標準,實現(xiàn)了組合型電子式互感器的100M以太網(wǎng)接口。 電子式電流互感器在高電壓等級的應用研究中,ECT高壓側的電源問題是關鍵技術之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個特制的電流互感器(取電CT),直接從高壓側母線電流中獲取電能。在取電CT和整流橋之間設計一個串聯(lián)電感,大大降低了施加在整流橋上的的感應電壓并限制了取電CT的輸出電流,起到了穩(wěn)定電壓和保護后續(xù)電路的作用。激光電源方案以先進的光電轉換器、半導體激光二極管和光纖為基礎,單獨一根上行光纖同時完成供能和控制信號的傳輸,在不影響光供能穩(wěn)定性的情況下,數(shù)據(jù)通信完成在短暫的供能間隔中。在高電位端控制信號通過在能量變換電路中增加一個比較器電路被提取出來。本文還提出了一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。作為綜合應用實例,設計并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術的高壓電子式電流互感器。互感器高壓側的一次轉換器能夠提供兩路傳感器數(shù)據(jù)通道,并且具有溫度補償和采集通道的自校正功能,在更寬溫度、更大電流范圍內(nèi)保證了極高的測量精度:互感器低電位端的二次轉換器具有數(shù)字和模擬接口,可以接收數(shù)據(jù)并發(fā)送命令來控制一次轉換器,包括同步和校正命令在內(nèi)的數(shù)據(jù)信號可以通過同一根供能光纖傳送到一次轉換器。該互感器具有在線監(jiān)測功能,這種預防性維護和自檢測功能夠提示維護或提出警告,提高了可靠性。系統(tǒng)測試表明:具有低功耗光纖發(fā)射驅(qū)動電路的一次轉換器平均功耗在40mw以下:上行光纖中通信波特率可以達到200kb/s,下行光纖中更是高達2Mb/s;系統(tǒng)準確度同時滿足IEC6044-8標準對0.2S級測量和5TPE級保護電子式互感器的要求。
上傳時間: 2013-06-09
上傳用戶:handless
電流互感器是電力系統(tǒng)中最重要的高壓設備之一。它被廣泛應用于繼電保護、系統(tǒng)監(jiān)測、電力系統(tǒng)分析之中,關系到電力系統(tǒng)的安全性與可靠性。隨著電力系統(tǒng)向高電壓、大容量和數(shù)字化方向的發(fā)展,傳統(tǒng)的電磁式電流互感器很難滿足電力系統(tǒng)發(fā)展的進一步要求。因此,研究基于計算機技術、現(xiàn)代通信技術及數(shù)字處理技術的以電子式電流互感器(ECT)為代表的、新型的高精度電流互感器成了大勢所趨。在電子式電流互感器的應用研究中,ECT高壓側的電源問題是關鍵技術之一。 本文對國內(nèi)外電子式電流互感器發(fā)展的現(xiàn)狀進行了描述,并對已有的電子式電流互感器的高壓側供能方式進行了總結。論文根據(jù)本課題組所研究的電子式電流互感器的特點,對電子式電流互感器的高壓側供能系統(tǒng)的設計進行了研究,提出一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法。 本文首先設計了一種應用于高壓電子式電流互感器的數(shù)字化激光電源,包括大功率激光器的驅(qū)動電路、基于16位低功耗單片機MSP430的過流保護電路和恒溫控制電路、輸入電路、顯示電路、以及高壓側變換電路。其供能部分由低電位側的大功率激光光源產(chǎn)生激光輸出,經(jīng)光纖將激光能量傳輸?shù)竭_高電位側的光電池,再由光電池進行光功率到電功率的光電變換后,形成滿足光電電流互感器傳感頭部分所需的電壓輸出。實驗結果表明,該電源可以提供穩(wěn)定的6V電壓,其功率不少于300mW。 本文又設計了了一種應用于高壓側電子裝置中的CT電源方案:通過一個特制的電流互感器(CT),直接從高壓側一次母線電流獲取電能,憑借在CT和整流橋之間串聯(lián)的一個電感,大大降低了施加在整流橋上的的感應電壓并限制了CT的輸出電流,起到了穩(wěn)定電壓和保護后續(xù)電路的作用。實驗結果表明,該電源能輸出穩(wěn)定的5V直流電壓,紋波不超過25mV。 最后,本文提出了一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。
上傳時間: 2013-06-05
上傳用戶:chuandalong
基于DSP在線式UPS不間斷電源控制系統(tǒng)的研究
上傳時間: 2013-07-08
上傳用戶:yangbo69
在電力系統(tǒng)容量日益擴大和電網(wǎng)電壓運行等級不斷提高的潮流下,傳統(tǒng)電磁式互感器在運行中暴露出越來越多的弊端,難以滿足電力系統(tǒng)向自動化、標準化和數(shù)字化的發(fā)展需求,電子式互感器取代傳統(tǒng)電磁式互感器已經(jīng)成為一種必然的趨勢,并成為人們研究的熱點。本文圍繞電子式電流互感器高壓側數(shù)據(jù)采集系統(tǒng)進行了研究與設計。 Rogowski線圈是電流傳感元件,本文總紿了Rogowski線圈的基本原理,其中包括線圈的等效電路和相量圖,線圈的電磁參數(shù)計算。在理論研究的基礎上,結合實際設計一款高精度PCBRogowski線圈。電容分壓器是電壓傳感元件,文章中介紹了傳感器的原理、傳感器的模型結構,針對其自身結構缺陷和工作環(huán)境的電磁干擾,提出具有針對性的電磁兼容設計方法。 積分器的性能一直是影響Rogowski線圈電流傳感器的精度和穩(wěn)定性的重要因素之一。模擬積分器具有結構簡單、響應速度快、輸入動態(tài)范圍大等優(yōu)點;數(shù)字積分器具有性能穩(wěn)定,精度高等優(yōu)點。后者的優(yōu)勢使其成為近年來Rogowski線圈電流互感器實用化研究的一個熱點問題。本文設計了一套數(shù)字積分器設計的方法,其中包括了積分算法的選擇,積分輸入采樣率和分辨率的確定,數(shù)字積分器的通用結構,積分初值的選擇方法等。 為了保證系統(tǒng)的運行穩(wěn)定,文章中的系統(tǒng)只采用激光供電模式,降低數(shù)據(jù)采集系統(tǒng)的功耗就成了系統(tǒng)設計的一個重要環(huán)節(jié)。文章中介紹了一些實用的低功耗處理方法,分析了激光器的特性,光電池的特性和光電轉換器件的特性,并根據(jù)這些器件的特性,改進了數(shù)據(jù)發(fā)送激光器的驅(qū)動電路,大幅度降低了系統(tǒng)的功耗,保證了系統(tǒng)在較低供電功率條件下的正常運行。 論文最后對全文工作進行總結,提出進一步需要解決的問題。
標簽: 電子式互感器 數(shù)據(jù)采集系統(tǒng)
上傳時間: 2013-07-10
上傳用戶:zsjzc
該系統(tǒng)是一款磁卡閱讀存儲器,根據(jù)用戶要求解決了普通閱讀器只能實時連接計算機,不能單獨使用的問題。而且針對作為特殊用途的磁卡,要求三道磁道都記錄數(shù)據(jù),并且第三磁道記錄格式與標準規(guī)定的記錄格式不同時,系統(tǒng)配套的應用程序?qū)ζ渥隽苏_譯碼、顯示。 @@ 整個系統(tǒng)包括單片機控制的閱讀存儲器硬件部分,和配套使用的計算機界面應用程序軟件部分。其中硬件電路包括磁條譯碼芯片、外部存儲器芯片、串口電平轉換芯片等等,所有的工作過程都是由單片機控制。我們這里選用紫外線擦除的87C52單片機,電路使用的集成電路芯片都是采用SMT封裝器件,極大縮小了讀存器的體積,使用簡單,攜帶方便。 @@ 磁條譯碼芯片采用的是中青科技有限公司出品的M3-230.LQ F/2F解碼器集成電路。該IC實現(xiàn)了磁信號到電信號的轉換。外部存儲器則是使用的8K Bytes的24LC65集成芯片,擴展8片,總容量達到8×8K。 @@ MAXIM公司出品的MAX232實現(xiàn)了單片機TTL電平到RS232接口電平的轉換,從而與計算機串口實現(xiàn)硬件連接。 @@ 計算機界面顯示程序采用當今使用最廣的面向?qū)ο缶幊陶Z言Visual Basic 6.0版本(以后簡稱VB),并且使用VB帶有的串口通信控件MScomm,通過設置其屬性,使其和下位機單片機協(xié)議保持一致,進而進行正確的串口通信。關于磁道上數(shù)據(jù)記錄的譯碼,則是通過對每條磁道上數(shù)據(jù)記錄進行多次實驗,認真分析,進而得到了各條磁道各自的編碼規(guī)則,按照其規(guī)則對其譯碼顯示。這部分程序也是通過VB編程語言實現(xiàn)的。另外,計算機應用程序部分還實現(xiàn)了對下位機讀存器的擦除控制。 @@關鍵詞:磁卡,閱讀存儲器,單片機,串口通信,track3數(shù)據(jù)譯碼
上傳時間: 2013-08-05
上傳用戶:黃華強
電容式觸摸傳感器設計技巧:針對電容式觸摸技術的一些知識原理說明與技術設計討論.
上傳時間: 2013-07-16
上傳用戶:hainan_256
逆變電源的發(fā)展是和電力電子器件的發(fā)展聯(lián)系在一起的,隨著現(xiàn)代電力電子技術的迅猛發(fā)展,逆變電源在許多領域的應用也越來越廣泛,同時對逆變電源輸出電壓波形質(zhì)量提出了越來越高的要求。逆變電源輸出波形質(zhì)量主要包括三個方面:一是輸出穩(wěn)定精度高;二是動態(tài)性能好;三是帶負載適應性強。因此開發(fā)既具有結構簡單,又具有優(yōu)良動、靜態(tài)性能和負載適應性的逆變電源,一直是研究者在逆變電源方面追求的目標。本文對逆變電源三閉環(huán)控制方案、輸出相位控制、逆變電源數(shù)字化控制系統(tǒng)進行研究,以期得到具有高品質(zhì)和高可靠性的逆變電源。 本文研究了單相全橋逆變電源與三相橋式逆變電源主電路參數(shù),包括逆變器、吸收電路、驅(qū)動電路、變壓器和濾波器,并對逆變電源變壓器的偏磁產(chǎn)生原因進行了深入分析,最后給出了有效的抗偏磁措施。針對三相橋式逆變電源通常不能保證三相電壓輸出平衡,研究了一種可以帶不平衡負載的三相逆變電源。研究了逆變電源的控制原理,建立了逆變電源系統(tǒng)動態(tài)模型,在此基礎上對逆變電源的各種控制方案的性能進行了對比研究,從而確定了一種新穎的高性能逆變電源多閉環(huán)控制方案。另外,針對逆變電源輸出相位存在固有滯后問題,采用了一種利用電壓瞬時值內(nèi)環(huán)對逆變電源滯后的相角進行補償控制的策略,分析表明上述控制策略雖然有效,但無法做到輸出相角穩(wěn)態(tài)無差,對此,提出一種移相控制方案設想,相當于在原多環(huán)控制方案的基礎上加了一個相位控制環(huán)。這樣可以使逆變電源輸出相位誤差得到有效的補償,輸出相位精度更高。文章設計了逆變電源數(shù)字控制系統(tǒng),采用TMS320LF2407A控制產(chǎn)生SPWM波,給出控制系統(tǒng)DSP程序運行流程圖,并用DSP對其進行了實現(xiàn)數(shù)字化。多環(huán)反饋控制系統(tǒng)的采用,使系統(tǒng)具有優(yōu)異的穩(wěn)態(tài)特性、動態(tài)特性和對非線性負載的適應性,使逆變電源的性能得到有效提高。
上傳時間: 2013-04-24
上傳用戶:tianjinfan
本文介紹了埋弧焊的特點、發(fā)展過程、國內(nèi)外的研究現(xiàn)狀;分析了軟開關逆變式主回路的優(yōu)點、模擬電路控制系統(tǒng)和數(shù)字化控制系統(tǒng)的優(yōu)缺點,指出數(shù)字化控制是逆變埋弧焊機控制的發(fā)展方向;對埋弧焊接工作原理和埋弧焊機控制系統(tǒng)進行分析,介紹了交流方波埋弧焊的優(yōu)點;論述了變動送絲電弧控制系統(tǒng)的原理及影響因素,并且分析了變動送絲情況下焊接電弧的穩(wěn)定性,為逆變式交流方波埋弧焊系統(tǒng)的設計提供了理論依據(jù)。 在分析傳統(tǒng)交流方波埋弧焊主回路的基礎上設計了主回路結構,對主回路中一次、二次逆變回路的軟開關工作方式進行分析并做了簡單仿真。IGBT是逆變電源的核心部件,文中論述了IGBT功率器件的選型和各種保護措施以保證系統(tǒng)的可靠工作。焊機工作發(fā)熱量很大,本文介紹了整機和關鍵器件的熱設計。 數(shù)字化控制方式是逆變埋弧焊機控制的發(fā)展方向,本文采用“MCU+DSP”的控制結構,對埋弧焊的整個焊接過程進行精確控制。文中詳細介紹了主控制板的設計思路和電源、電流與電壓反饋、控制芯片最小系統(tǒng)、通信與保護工作電路。焊機的工作中,各種干擾不可避免,對各種可能干擾分析的基礎上在硬件電路設計和PCB板的制作中采取了相應的抗干擾措施。軟件設計是焊接穩(wěn)定進行的關鍵因素,文中介紹了控制系統(tǒng)中關鍵步驟的軟件設計思路和流程并在軟件的實現(xiàn)中采用抗干擾措施。 最后,對采用本控制系統(tǒng)的埋弧焊機進行初步實驗,結果表明本文所設計的埋弧焊機控制系統(tǒng)能夠滿足逆變埋弧自動焊的要求,具有電路簡單,控制精度高,抗干擾能力強、操作方便、工作穩(wěn)定可靠等優(yōu)點,提高了焊機的綜合性能及自動化程度。 本課題所設計的逆變式交流方波埋弧焊電源具有良好的輸出特性和控制性能,可滿足埋弧自動焊和手工焊的要求。采用交流方波的焊接波形、對焊接整個過程進行實時軟件控制,電弧穩(wěn)定,焊接效果好。 關鍵詞:埋弧焊;交流方波;逆變;軟開關
上傳時間: 2013-06-08
上傳用戶:mingaili888