% Computation of ST-ZCR and STE of a speech signal.
%
% Functions required: zerocross, sgn, winconv.
%
% Author: Nabin Sharma
% Date: 2009/03/15
[x,Fs] = wavread('so.wav'); % word is: so
x = x.';
N = length(x); % signal length
n = 0:N-1;
ts = n*(1/Fs); % time for signal
% define the window
wintype = 'rectwin';
winlen = 201;
winamp = [0.5,1]*(1/winlen);
VHDL編寫的4選一數(shù)據(jù)選擇器
entity mux41a is
port(a,b:in
std_logic;
s1,s2,s3,s4:in std_logic;
y:
out std_logic);
end entity mux41a;
architecture one of mux41a is
signal ab:std_logic_vector(1 downto 0);
Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
This work titled A Digital Phase Locked Loop based Signal and Symbol Recovery
System for Wireless Channel is intended to serve as a document covering funda-
mental concepts and application details related to the design of digital phase locked
loop (DPLL) and its importance in wireless communication. It documents some
of the work done during the last few years covering rudimentary design issues,
complex implementations, and fixing configuration for a range of wireless propa-
gation conditions.
The design and manufacturing of wireless radio frequency (RF) transceivers has developed rapidly in recent ten
yeas due to rapid development of RF integrated circuits and the evolution of high-speed digital signal
processors (DSP). Such high speed signal processors, in conjunction with the development of high resolution
analog to digital converters and digital to analog converters, has made it possible for RF designers to digitize
higher intermediate frequencies, thus reducing the RF section and enhancing the overall performance of the RF
section.
The objective of this book is to allow the reader to predict the received
signal power produced by a particular radio transmitter. The first two
chapters examine propagation in free space for point-to-point and
point-to-area transmission, respectively. This is combined with a dis-
cussion regarding the characteristics of antennas for various purposes. In
chapter 3, the effect of obstacles, whether buildings or mountains, is
discussed and analytical methods, whereby the strength of a signal is the
shadow of an obstacle can be predicted, are presented.
Radio frequency (RF) power amplifiers are used in everyday life for many applica-
tions including cellular phones, magnetic resonance imaging, semiconductor wafer
processing for chip manufacturing, etc. Therefore, the design and performance of
RF amplifiers carry great importance for the proper functionality of these devices.
Furthermore, several industrial and military applications require low-profile yet
high-powered and efficient power amplifiers.
In order to improve the spectral efficiency in wireless communications, multiple
antennas are employed at both transmitter and receiver sides, where the resulting
system is referred to as the multiple-input multiple-output (MIMO) system. In
MIMO systems, it is usually requiredto detect signals jointly as multiple signals are
transmitted through multiple signal paths between the transmitter and the receiver.
This joint detection becomes the MIMO detection.